NOC: Introduction to Airplane Performance Prof. A. K. Ghosh Department of Aerospace Engineering Indian Institute of Technology, Kanpur

Lecture - 04 Hansa 3 Aircraft and Its Primary Systems

(Refer Slide Time: 00:09)

Student: Today, we will learn about Hansa 3 aircraft, which is an anneal manufacture Aircraft, Hansa 3 is an all composite low wings single engine aircraft, which is equips with fixed tricycle landing gear. It consists of a conventional primary controls, namely aileron, elevator and rudder and secondary controls, which has flaps and taps. The primary controls are manually operated by a dual interconnected set of controls sticks, which can be seen inside the cockpit another rudder pedal, which is also located inside the cockpit, where our secondary control has a manual and an electric operation.

(Refer Slide Time: 00:49)

There are two integral side by side seats for pilot and co pilot. The aircraft, this aircraft is powered by a Rotax 914 F 3 engine, which is a four stroke four cylinder horizontally opposed piston engine. The aircraft is equipped with a variable pitch two bladed constant speed Hoffmann composite propeller, the length of this aircraft is 7.6 meters and it is height is 2.6 meters. It is maximum takeoff feet is 750, 750 kg it has a fuel tank, which is fitted behind the pilot seat, with the tank capacity of 91 letters of which 85 meters is usable.

The aircraft is equipped with a variable pitch two bladed constant speed Hoffmann composite propeller, the length of the say aircraft is 7.6 meters and it is height is 2.6 meters. It is maximum takeoff feet is 750 kgs it has a fuel tank, which is fitted behind the pilot seat with the tank capacity of 91 litters, of which 85 litters is usable, so this is a brief introduction of Hansa 3 Aircraft, which is an anneal manufacture.

Now, whenever we think about the aircraft description of the structure, we intend to say that the internal structure, comparison of the item of equipment and the various instruments on the cockpit panel and the external structure, which consists of the wing, a primary control surfaces, the secondary control surfaces, the landing gears, engine and the propeller.

(Refer Slide Time: 02:21)

The most important part of an aircraft is the wing that is a lift producing device. The wing of Hansa 3 Aircraft is a single piece flying with front spar, the leading edge spar, main spar and the rear spa. It is of composite construction, because spars are around 10.5 meters consisting of a primary control surface. Aileron attached to a wing and a secondary control surface flap, which is located in both side of each wing.

Flap is located in both side of each wing, which is secondary control surface used at the time of landing and as well as the time of takeoff. So, after the wing the main plane comes the tail plane, which consists of a horizontal stabilizer, that is a fixed wings to which it is attached on the inner wheel to a surface that is an elevator and a vertical stabilizer, which is again a fixed wings, to which it is attached to a movable surface that is called rudder, this is the elevator movement and this is the rudder movement.

(Refer Slide Time: 03:22)

Now, when we get to know about the elevators, elevators are the primary site control surfaces, which are usually at the rear of an aircraft. Elevators are usually used to the tail plane or horizontal stabilizers, which is a fixed wing. We control the aircraft pitch that is, movement of aircraft about the lateral axis.

(Refer Slide Time: 03:58)

And, when we talk about the rudder, rudder is a directional control surface, the rudder is usually attached to the fin or the vertical stabilizer, which is a fixed vertical surface. They control the yawing motion of the aircraft, participant of the aircraft above the vertical axis, the movement of the rudder is provided by means of pedals, which is provided in the cockpit. A forward and half movement of pedals are transmitted to the rudder pedals to the rudder controls by means of bell cranks, levers and push pull rods.

Pressing the right rudder pedal, turns the controls surface towards right, thereby which an air pressure acts upon it, which in turn forces the tail left and nose of the aircraft towards right. All primary controls are mass balanced and are provided with stops to limit the respective range of the controls. The primary control surfaces, which is attached to the wing is known as aileron, it is the hinged flight control surface usually forming part of the trailing edge of each wings of a fixed wing aircraft.

Aileron are used in spears to control the aircraft end role, that is the movement of aircraft about it is longitudinal axis, which normally results in a change in flight path due to the tilting of the left vector. Movement around the axis is known as rolling or spanking, the site ward movement of the controls stick transmits motion to ailerons by means of lever, bell cranks and push pull rods. The normal range of the movement of aileron for Hansa 3 Aircraft is 20 degrees up and 20 degrees down.

As we can see, when the controls stick is move towards left, the left aileron raises up, whereas the right aileron goes down. The left aileron, which is going up creates drag whereas the right aileron increases the surface area and hence raises the right wing, whereas the left aileron goes down and lowers the left towards the left wing and hence the aircraft rolls towards the left.

Wing flaps are, manually operated by means of a control handle provided in the center pedestal located in the cockpit. The movement of the control handle it is transmitted to the flaps through air tubes, bell cranks and push pull rods, wing flaps and in this aircraft is a single sorted flower type flap, it has a 10 degree and 20 degree down position.

Flaps can be used at the time of take off and as well as the time of landing. Trim tap, which is located on the left elevator provided through it the pilot by assisting in operation of primary control surfaces and also to keep the aircraft balanced. It is operated by an irreversible electrical activator, which is located inside the horizontal stabilizer, which is directly attached to the operating debar of the tab and it is located on the left side. This is all about the controls and the structure, external structure of Hansa 3 Aircraft.

(Refer Slide Time: 07:07)

Here comes instrumental panels of Hansa 3 Aircraft, we can see the various instruments instead on instrument panel, will start with the primary site instrument, that is air speed indicator, this is air speed indicator, which gives the reading in lots. Then, we have altimeter, which tells us the height that is the vertical speed indicator also known as rate of climb indictor, which tells us the fit per minute. A S I altimeter and vertical straight indictor this three are and the picots static instruments out of which, altimeter and vertical speed indicator, take the total pressure the dynamic pressure and does the static pressure.

Then, we have the ((Refer Time:07:54)), we have a engine instruments static the manifold pressure gauge this is the taco meter, also known as R P M indictor, which tells us both the R P M, of the engine of the static R P M, for this engine an ground is an ground 22, 50 R P M. Then, we have the ignitions switch over here, we have various indictors for C H T that has cylinder head temperature indicator, we have an oil temperature indicator, we have a oil pressure indicator.

Also, we have a turn coordinator a line with it is a level indicator, which tells us the aircraft is a lining towards left or towards right, can see the markings on the cage as L or R. So, this is a turn co coordinator, then we have various switches for lights, for electrical panels this is the radio communication nets of the aircraft, above you can see the magnetic compass and just this is the outside air temperature gauge.

So, magnitude compass gives us the heading, where there aircraft is moving outside air temperature tells us the free air temperature of the air and the various stages gives us the reading, which helps a pilot to manual the aircraft property.

(Refer Slide Time: 09:12)

Below here, you can see the various controls that is the throttles control and the propeller control. Here is the choke activate, then we have this is the flap leaver, is the choke, which is used to activate the engine, we have the throttle controls, we have the propeller controls. Propeller controls to make the make the propeller pitch find or force it is having a constant speed propeller, which can be changed this, the throttle which can be set on idol on 100 percent and 115 percent that is the max R P M.

(Refer Slide Time: 09:48)

This the lever for flap, which has three positions after 10 degrees and 20 degrees after this flap fully up 10 degrees is, when flap is should crafted down wards to 10 degrees and 20 degrees, when flap is attracted fully towards down wards that is 20 degrees, 10 degrees is use of the time of takeoff to increase the surface area of the wing and to increased in the left, twenty degrees is used at the time of to increase more graft, another provides safe landing in a minimum distance.

(Refer Slide Time: 10:23)

This is the controls tic, which is used to operate the primary flight controls, the aileron and the elevator. Moving it towards left or right gives the movement to the aileron and the rolling motion to the aircraft, moving it forward or aft gives the pitching moment to the aircraft, that is to the motion to the elevator and thus and aircraft pitching takes place.

Below, you can find the rudder paddles here, this are the paddles moving towards left or right and when this are used in ground both of them are together to give a breaking action to the aircraft. And air this surf as yawing motion this gives a yawing motion to the aircraft present the left rudder pedal, gives the motion of the aircraft motion of the control surface towards left. Pressing the right rudder peddle, when rudder paddle goes forward the paddle most towards right and accordingly gives the yawing motion to the aircraft.

(Refer Slide Time: 11:30)

As I, mentioned behind the pilot and co pilot seat there is a fuel tank, tank capacity of ninety one liters this is the location of the fuel tank, within this is fuel tank is tank capacity is 91 litter out of, which 85 litters is usable fuels and 6 litter since unusable. Whenever, an aircraft passes through the lightning atmosphere is a protection provided on the aircraft to protect it surface from lightning ill effect...

(Refer Slide Time: 12:01)

So, on this Hansa 3 Aircraft there are 6 lighting arrestors, which arrest charges and passes on them to the two ground the charges. There are 6 lighting arrestors to in the form of a triangular plate, which are located on both side of the wings one on top of the fuse large as aluminum rod and three on the three under on the three landing gears to main wheels and the nose gear this six arrestors in all carries with the charges and ground sense to the surface, so that the surfaces aircraft surfaces is rotate from any lightning strike.

In, the aircraft salon in day time as well as in night there are certain light, which are provided on the aircraft surfaced ate the pilot, to fly the aircraft and also to ate the pilot of other aircraft, which are flying in the air space in or around the aircraft. So, we have navigation lights located on the wings step the left side that is a both side it contains a red light the right side contains the green light on top of the rudder there is a light, which is blinking all the time and that is known as an anti collision light that is anti collision light.