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So welcome to the lecture of this Finite Volume Method. So, far if you recall what we

have been discussing is the dicretization process. How given a conditions you or a given

a problem actually you discretize the system and reach to the particular linear system?
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So, if you recall from a previous lecture, this is a physical problem of interest that we are

trying to solve. This is the physical problem. So, this physical problem we need to get a

solution. So all along these process what we end up? Getting a linear system; that is A x

equals to b.

So, what you do? Given a problem in hand that could be of any kind in fluid flow system

or heat transfer related problem. So, you convert them to a 2 different approach. One is

that the governing equations that actually govern the system. So, for the problem that we

had discussed is a problem of this kind of a heat, spread base; where you have a heat

sink, where you have a microprocessor, which actually generates the heat. So, one case

you have a heat source, one case heat sink and then the walls are sort of insulated.



And given that physical problem in hand, your first define the physical modelling which

we called is a domain modelling or essentially this is the physical problem of interest.

So, the physical problem you need to divide in such a fashion that your actual problem.

So,  this  actual  problem  is  completely  replicated.  Now  from  the  actual  problem  to

physical  problem in  one  side,  then  you need  to  define  the  governing equations,  the

governing equation that actually govern this physical problem.

So, one hand we call it is a domain modelling; that means, the replication of the physical

system. Other hand you call it a physical modelling, so that means, you write down the

governing  equations.  For  this  particular  problem  we  are  solving  the  steady  heat

conduction equation. So, once you have this you then move to the next step of domain

discretization.  So,  the  domain  modelling  essentially  take  you  to  the  domain

discretization. So, domain discretization means, the particular physical problem that you

have you discretize in the domain. So, these actually gives rise to lot of questions like

kind of gives rise to the mesh or grid.

Why this is important? Because mesh or grid these are individual cell that because we

have divided this particular problem in this kind of rectangular boxes which we call it a

individual  element or individual  cell.  Now once you divide them into and obviously,

when while doing all these you take care of your physical system into account like patch

2, this essentially the heat sink; so that means, there will be a condition, which will be

the boundary condition for the temperature, then patch 3 essentially the microprocessor.

So, this will  be the temperature for the microprocessor or source and then patch one

which actually represents the outer boundary. So, these are all insulated outer boundary

and then you get this different mesh.

So and while talking about this we have also discussed that this is not the only way you

can generate the mesh. You could have unstructured mesh and then whole idea is that the

physical problem convert to the domain, then the domain leads to the grid or points or

the elements  or the cell;  where your numerical  equations  or the governing equations

would be solved. Now, the parallely from the physical modelling you come down to

discretized equation.



So, this is the system of equations or the governing equation that we are solving for the

heat transfer equation steady state heat transfer equation and the steady state heat transfer

equations you discretize. Here you need the input from different numerical methods.

So,  that  means,  like  finite  difference,  finite  volume,  finite  element  so,  these  are  the

different methods. But particularly in our context we are talking about this. So, when we

are talking about the finite volume, you discretize them and you get back these kind of

system. Essentially that is the linear system you get. So, you get a system like Ax equals

to b, once you get Ax equals to b you solve for it. And when you solve for that you get

the final solution.

Now, while solving that Ax equals to b, also you need to have the different solvers or the

linear solver. So, we have just talked about what kind of system, one approach is that the

linear  system,  one  can  solve  the  direct  approach;  that  means  you get  direct  A to  A

inverse. That is one option another option is that iterative approach; that means, you get a

solution for A to A exact through the iteration process. So, finally, you get the solution

for the system, ok.
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So and if you look at that so you had this particular problem; so, one hand it is a domain

modelling. So, you get these sort of things, one hand you have a physical modelling. So,

you have get all the boundary conditions, along with the governing equations this is the

governing equations that actually dictate the system and you solve for it.
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And then you have the discretized domain. So, all these are individual element or cell

and finally, you get the discretized equations, and this is particularly your Ax equals to b.

And finally, you solve it the linear system. So, that gets you the solution, ok.

So, once you have the solution in this particular process, we just touched up on that this

numerical methods using the finite volume, and get this linear system. So, there are few

things that you have come across is the derivatives.

(Refer Slide Time: 07:20)



So, even then there as surface fluxes and other derivatives. So, no matter what kind of

approach you adopt, whether it is a finite volume or finite difference at the end when you

come down to the algebraic system you need to get some sort of a derivative. Now this

derivative calculation is another thing that leads to lot of errors. So, in the any numerical

methods so, any numerical methods the important component is this calculation of these

derivatives.

So, that leads to the errors, accuracy of the system, stability and all other associated stuff.

So now, we need to know how you calculate these derivatives. So, which will be true for

any other function any other variable. So, once we know that how you calculate that,

then so the next step would be to look at this derivatives.
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So,  when you look at  this  derivatives  so,  that  would  talk  about  the  derivative  from

derivative, then we will look at this error of this discretization process. From there we

look at the accuracy of the system.

Now, in a typical sense, if I have to get the derivative of this function of f of del f by del

x, then you get the derivative like x plus x minus fx by dx. This is a definition of getting

the derivative. Now this is a simple definition of the derivative that this is associated.

Now how do you find out the function f x plus dx? If you know the function of fx, then

how  do  you  decide  dx.  So,  still  these  are  the  associated  question  alongside  the

calculation of the derivative.



So, that will tell how the physically the differential equations are discretized. Because

once  we know this  derivative  then  only  would  be  able  to  discretize  our  differential

equation.  And  while  doing  that  here  actually  everything  becomes  finite  difference

approximation,  even then you are  using  finite  volume kind of  approach.  That  is  the

conservative approach and once you have a self-conservative system, once you come

down to calculate the derivative or the fluxes. So, either you call it the flux calculation or

derivatives calculation, it requires some sort of a finite difference approximations.

And we were going to see how you can do that, and then we will look at certain example

how the equations are derived and what are the conditions. So, essentially that lead to the

stability and error calculation; so, error, accuracy and stability of the system. So, once we

know that, then only we can I mean actually appreciate whether given a system when

you bring down to a linear system it not necessary that always you are going to get an

solution. Because that numerical system or the linear system they are associated with all

these parameters.

So,  given a  condition,  one should know what  kind  of  error  he has  in  his  numerical

approximation, what kind of accurate system he has in his numerical methods, what is

the condition for his stability of the system, it is not guaranteed that if you have a given a

system this is always going to be stable. So, you need to get all these details and that is

possible when you get an look or have a look on this derivative calculation.
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Now, if you look at this simple example, this is an example, the example is the del 2 p by

del t c square, this is the equation and this equation actually represents the acoustic wave

equation. And these are the application of that, application of the system.

Seismology, acoustics,  oceanography, meteorology, so  all  these  areas  there  could  be

more all these area this is the applications, but the essential the governing equation this is

the governing equations which actually represent this acoustic wave equations which is

nothing but the second order pressure transient equations along with this. And what that

delta stands for this nothing but the second derivative of the squares. And here p stands

for pressure, c stands for acoustics wave speed and s stands for sources.

So, if I have a acoustics wave equation that can be represented by this kind of equations.

Now our task is to get this equation solved through a numerical method. So, particularly

we are talking about finite volume method. So, we should be able to get an solution

using finite volume method of this equation. So, in a if I talk about in a sense, this is the

governing equation  then  represent  my physical  problem, the  physical  problem is  the

solution of the acoustics wave equation for seismology or acoustics.

Now, this  is  the  governing  equations  so  the  system  is  represented  by  these  set  of

equations. And our numerical approach should be to get the solution of this particular

system. Now while doing that we come across so when you have the system, the ultimate

bottom line is that from this system you convert to the linear system. But in between that

you have a mesh generation you have a discretizations and once you discretize that you

come across derivative, you come across error you need to account for your accuracy,

you need to account for your stability of the system all this would be the byproduct of

that.

Similarly, if you have a reaction diffusion system, this is the application and these the

area  of  applications.  Geodynamics,  oceanography,  meteorology  all  these  are  the

application area, and essentially this is the governing equations. So, that is a reaction

diffusion system. And C is essentially or the C stands for the tracer. It could be any

scalar. It could be any diffusion variable; it could be any non-reactive variable or tracer

concentration. And there is a unsteady term, k is the diffusivity, v is the flow velocity, R

is the reactivity and then p is the source term, ok.



. So, and the system that is represented by this equations are unsteady term, this is your

variant term, convection term reaction term as a so again the idea is that this is a physical

problem in hand, the governing equations is like this these, governing equations actually

represents  the  reaction  diffusion  system.  And  then  our  numerical  methods  should

discretize the system or the numerical approach that we use discretize the system to lead

to a linear system, and we will get a solution. Once we get a solution that should again

reflect back any physical problem that is dealt with this reaction diffusion system.

So, this is a some example where your derivative become really important.

(Refer Slide Time: 15:25)

Now, again coming back to the derivative calculation; so, underneath of all these are the

calculation of the derivatives. So, how you calculate the derivatives? So, for a given a

function f x; so, that del f by del x you can calculate like limit del x tends to 0, f x plus dx

minus f x by dx. So, that is method one or approach 1, you can say approach 1. Or I can

calculate del f by del x like limit del x tends to 0 f x minus.

So, if you look at these 2 case, there is a slight difference. In these particular case, you

are considering if I am trying to find out a derivative at a particular point in the domain.

This is my ith point where I am trying to find out the del f by del x. One case and let us

say this is the distance between these points are dx, ok.



So, one case I am taking the points ahead of it. So, this essentially means f at i plus 1

minus function at i. So, one case I am taking the function at this point, the second case I

am taking the point at this point. Since, I am trying to find out the derivative at point i so

that remains constant. Or alternatively this is the approach 3 or third approach, where

you can find out the derivative considering the point here and considering the point here.

So, one case it is essentially f i plus 1 minus f i minus 1 divided by 2 delta x. Because if

this distance are delta x or dx, ok.

So, all these are the calculation of derivatives. What remains constant here is this delta x,

ok. And the delta x also need to be finite and the calculation of these different methods

are given different names. So, one case it is forward approach, other case is backward

approach, third case is central approach.

Why we are saying all this? Because when you are trying to find out the derivative at ith

location, invoking the point at i plus 1 that it is actually become the forward approach.

You  are  considering  the  point  ahead  of  the  point  what  you  interested  in.  Second

approach; when you are using or invoking the point, the behind of that interested point;

that means, i and i minus 1. So, that actually is a backward approach. That means, you

are moving to these direction, one case you are going this direction, other case you are

going the backward direction. And the third case you actually involve the point ahead of

it which is i plus 1 and the point which is behind it i minus 1. But they are separated with

a finite distance of 2 times of the difference between each point.

So, this actually takes some sort of a mean approach between around this point. So, if

this point is sitting in the middle, as we said that dx, they need to be sort of uniform if,

then it cause the central approach, ok. But no matter what adapt here the dx needs to be

finite.
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Now, similarly equivalent approximation that as I said all these approximation that we

have written so far so del f by del x. So, this plus sign means you go forward. As I said

you are talking about this point i, you are having a point i plus 1, you are having a point i

minus  1,  and  these  are  the  distance  which  are  considered  to  be  uniform.  So,  these

become i plus 1 minus fi by like this. Backward you are moving backward. So, fi minus

fi minus 1, and in the case of centered you use f i plus 1 minus f i minus 1.

So, essentially around this point you get some sort of a mean. So, the way you adapt the

point, whether the point ahead of it, or the point behind it, or the point including both the

upstream and the downstream point, then you call it a center. So, the depending on the

point the derivatives are also given some sort of a name.
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Now, the question which remains same, I mean is these are not equal to when we talk

about this particular sign that means a lot. So, they are not necessarily equals to.

So, that means this is a approximation. So, what you can understand here or you can

assume?  That  all  this  derivative  that  we  are  calculating  whether  using  forward  or

backward all these derivative whether del f plus del f minus, all these are approximated.

So, as soon as the term approximation comes into the picture, it is always or bound to

associated with some sort of a errors. So, that is why we are going to discuss about errors

which are associated while finding this derivative.

Now, when it is say these are approximated then how do you find out these derivatives.

So, that leads to this famous theorem of the Taylor series which is A. How do you write

that?
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So, again this are the point of interest. I have a point ahead of it. And they are of uniform

distance. I have a point behind it also at a uniform distance. dx now if I write Taylor

series expression, then I write x plus minus dx. So, essentially if I write i plus minus 1;

that means, either I am writing for f i plus 1 or I am writing for f minus 1. And what you

are writing for? f x so, that is evaluated at f i plus minus dx remain constant, because this

is the distance between these 2 points.

So, I and i plus 1 this is the distance or i or i minus 1, ok. F prime i that means, f x plus

dx into f prime i dx square by factorial 2 f prime double prime i plus minus dx cube by

factorial 3 f triple prime i. So, all these at x means this is f 4 i all these are evaluated at

the  location  of  i.  So,  how do you find  out  these  derivative  using  this  Taylor  series

expression? So, essentially if I collect these terms and then write down that.
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So, let us write that if x plus dx minus fx. So, if you come back from these particular

expression, and you collate the term fx plus dx by dx. So, which means i plus 1 minus f i,

then you get 1 by dx dx f prime i f double prime i f triple prime i, these are all evaluated

at this i, ok.

Then if you take this terms into consideration, I can write f prime x or f prime i and o dx;

that means, I am not neglecting the higher order term. So, essentially the higher order

terms are higher order terms. And this o stands for the order. So, if you divide by dx so

any other term the highest order with dx. So, since dx is a small number, dx is a small

number any other terms would be small.  Because the third derivative will  invoke dx

square  being  dx  is  a  small  number  dx  square  or  dx  cube  would  be  much  smaller

compared to dx. That is why you can it is relatively or reasonably fair enough to write

that the other terms are kind of collected inside the order of dx.

So, what is the error? Essentially I am interested in this component and this component.

So, this is an extra term, and these extra term is coming due to Taylor series expansion,

ok. So, due to Taylor series expansion, you get this extra term and which essential is says

the first derivative if you calculate using this forward formulation. This is the highest

order of error is dx or in a reverse term sometime people say the first derivative using the

forward formulation is of the order dx; that means, the order of accuracy. Here this order



means a order of accuracy of the system. So, the order of accuracy of the system is in the

forward formula is the first order.

So, the other formulations, this can lead to a different set of error or different set of order

of accuracy. So, we can check what are them. Now for, but one point you can note here.

So, this says that the order of accuracy is first order for forward formula. Now if you use

the backward formula, for example, to calculate f i minus f i minus f i minus 1. If you

use like that, then that would be also first order derivative. So, whether it is a forward or

backward they are first order accurate, but the same thing is not true for second order

central system.
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The centered system what it does? That it does you have the point i point i plus 1 i minus

1 and this is dx, then I am using this point and this point. The central if you collects the

points you see the first derivative is order of dx square. So, essentially the center scheme

gives  you back  a  second  order  accurate  system.  Because  these  order  or  the  highest

ordered term which is actually  associated with this discretization or the Taylor series

expansion, they lead to the order of accuracy of the system.

And this is where when you say my numerical scheme is that order accurate or the these

order accurate; that means, the value are calculating the derivative the highest order term,

or the error which is associated with the highest order term which are actually left out of

the truncated. This sometimes call it also the truncation error, ok.



And we will talk about that as we move forward with the lectures, because that is also an

important quantity that we need to quantify and also discuss. So but for the time being

this also given a name truncation error, why it is that? Because you are only interested in

first order derivative and this the all higher ordered terms are truncated off. Since they

are truncated off if you are collectively take them together the order which actually gets

you back is the second order.

And since it is second order this is the order of accuracy of the system. So, the error now

if you see interestingly this is dx square. So, when a system is second order accurate, and

if your these dx nothing but my grid size for my numerical problem.

Now, if dx is small, if this is small, then you can think about the dx square root would be

much smaller. So, these term actually the error term becomes negligible or these does not

contribute to any numerical error; that is associated with your discretization scheme. But

this is very, very important to note here that if you do not consider this things properly

you may have a very stable system, but that does not guarantee that it you have a error

free system or less error system. Now another important thing there if you use forward or

backward compared to center this is always highest higher order accurate system.

So, what is recommended is that when you use any numerical scheme or calculation of

the derivative that is what actually the key element of any numerical scheme, how you

calculate the derivatives? Because the derivatives calculation will tell you what is the

order of accuracy of the system. So, more and more or higher orders you have you have

less error of these term, and that will have a more accurate system, ok. So, we will stop

here today, and we will take from here in the follow up lectures.

Thank you.


