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 So, welcome to the lecture of this Finite Volume Method.
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Now, the equation for this r n in step one is needed only to calculate essentially r 0. With

this formulation there will be no need to compute A phi n. So, this is no need to compute

in this formulation as it is some sort of replaced by A r n. So, that is why, no one, I mean

you do not have to or you do not need to calculate this particular term directly as it is

replaced.

However, some short comings are there in this particular approach is the lack of feedback

from the  so,  the  lack  of  feedback  from phi  n  from the  previous  iteration  value  the

feedback is not that into residual. So, which may cause some the solution to converge to

a very different from the exact one due to accumulation of some sort of an rounding

error. So, this is one of the deficiency of this particular approach can be I mean obtained

with a modified or better version.



Now, the other class of system is the conjugate gradient method. So, that is the other

class of system while the previous one what we have discussed is the steepest descent

method  and  the  present  one  that  we  are  going  to  talk  about  the  conjugate  gradient

method.  The  steepest  gradient  method  one  property  was  there  that  it  will  always

guarantee the convergence, but rate could be low. And that slow convergence is caused

due to some sort of an oscillations around that local minima forcing the method to search

for the same direction only.

So, that because of that algorithm so, to avoid that, some undesirable behaviour can be

seen and while doing that search in the direction for different directions for the previous

one. So, this can be accomplished by selecting a set of search direction like d 0, d 1 d 2

and so on d n minus 1, that A becomes orthogonal. So, two vectors that d n and d m are

said to be orthogonal to A if they satisfy some conditions like d transpose A d n is 0.
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So, now in each search direction in each search direction the right step size is taken and

the solution would be found after n steps and n plus 1 step can be written as phi n plus 1

equals to phi n plus alpha n d n. Now, you subtract this one from this one phi from both

the sides you get the error and the error at n plus 1 level is so, you subtract the phi from

both the sides it gets e n plus alpha n d n.

Now, you put these things together for the residual vector. So, that will get you minus A e

n plus 1 which is nothing, but A e n plus alpha n d n that will let you r n minus alpha n A



d n. So, that is what you get and in this case the it shows that the new residual at the n

plus 1 iteration level is just an linear combination of the previous residual and this guy A

d to the power n.

So, now, one has to establish another condition is that this error function e n plus 1 this

has to be all also A orthogonal. This also needs to be required. Now, this new condition is

also some sort of an equivalent condition to find out the minimum point along the search

direction of d n. So, now, using this A, orthogonality condition between e and d n, one

can express this condition as d n transpose A e n plus 1 equals to 0 which will be d n

transpose A e n plus alpha n d n.
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Now, which is essentially going to get us alpha n equals to d n transpose r n and d n

transpose A d n. So, that is what you get for alpha n. So, this requirement also implies

that it implies that d n of transpose A error function at n plus 1 is 0 which is nothing, but

d n transpose r n plus 1 equals to 0. So, if the search directions are known; that means, d

0, d 1, d 2, d n then alpha n can be straight away calculated.

Now, the task is  to find out find out search direction.  So, once we know the search

direction then alpha n can be calculated. Now, to find out the search direction one can

write this expression for d n plus 1 equals to r n plus 1 plus beta n and d n. Now, A

orthogonality this is a condition and this requirement of d vector. So, A orthogonality

requirement of d vector implies that d n plus 1 transpose A d n must be 0. Now, you



substitute this one now you put this one here and combine these two one can get the beta

n equals to minus r n plus 1 transpose A d n divided by d n transpose A d n. So, that is

what you get the beta n.
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Now, you can express your A d n in using this information you can express A d n 1 by

alpha n and minus r n. So, you get this. Now, you combined all these expression for

alpha n d n, A d n and all these things together you get the expression for beta n which

would be now r n plus 1 transpose r n plus 1 minus r n divided by d n transpose r n which

is writing like r n plus 1 transpose r n plus 1 minus r n plus 1 transpose r n and d n

transpose r n and this guy is essentially 0. So, this boils down to r n plus 1 transpose r n

plus 1 divided by d n transpose r n. That is what one get for beta.
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Now, the denominator which is sitting here in the expression of beta it can be further

extended or it can be further expressed like d n transpose r n which is equivalent to r n

plus beta n minus 1 d n minus 1 transpose r n. So, that is r n transpose r n plus beta n

minus 1 d n minus 1 transpose r n. This component is or equals to 0. So, this by becomes

r n transpose r n. So, one can rewrite beta n equals to you can see r n plus 1 transpose r n

plus 1 by r n transpose r n.

So, that is a nice expression based on the residual vector one can find out the beta.
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So, if you find out the beta in that way then you can put now, if someone has to look at

the  algorithm for  CG conjugate  gradient  algo  so,  that  would  become now you first

choose the residual as starting direction like d naught equals to r naught equals to b

minus A phi naught and you iterate start in at n unless or until convergence.

So, you keep on doing the iteration till you obtain the convergence. So, the next level

you choose the factor in d direction like alpha n equals to d n transpose r n divided by d n

transpose A d n. So, this is the way you choose the factor in d direction. Then you obtain

new phi such that phi n plus 1 equals to phi n plus alpha n d n. Now, after obtaining the

phi you need to cross check for the residual. So, you can calculate new residual like r n

plus 1 equals to r n minus alpha n A d n, that is how you calculate the new residual used

in the new value of the variable phi.

And, then one has to calculate the coefficient to conjugate residual. How? Now here you

get beta n equals to r n plus 1 transpose r n plus 1 divided by r n transpose r n. So, that is

how you calculate the coefficient to conjugate residual and then you finally, obtain the

new conjugated search direction like d n plus 1 equals to r n plus 1 plus beta n d n. So,

this is how you obtain the calculations.

So, the one important thing is that also in this particular case or rather this kind of this

class of methods if you use preconditioner, then it can actually improves the convergence

rate  improve  the  convergence  rate.  So,  that  is  where  one  can  see  the  utility  or

applicability of the preconditioner is also very handy in the c g algorithm.
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Now, if you have a preconditioner and so, you have a P is a preconditioner and this is

also positive symmetric  definite  matrix  and you multiply the original equations by P

prime,  then the problem is  that  P inverse a  is  not  necessarily  this  is  not  necessarily

symmetric even if even if P and A both are symmetric. So, that is the problem.

So,  to overcome this  problem the Cholesky decomposition  is  used to  write  P in the

particular form. So, the Cholesky decomposition is used and that is written like P could

be  LL transpose;  that  means,  and  that  to  guarantee  the  symmetry  to  guarantee  the

symmetry  the  system  equation  can  be  written  as  L  inverse  AL transpose  L  minus

transpose  L transpose  phi  equals  to  L inverse  b  where  your  L inverse  A L inverse

transpose this component particularly this component is positive symmetric definite. So,

this is not only symmetric, it is also positive definite.

So, now the CG method can be. So, once you use this kind of Cholesky decomposition to

get the preconditioner. Now, this is positive symmetric definite. So, and now here CG

method can be used to solve for the now the CG can be used to get L transpose phi for

which the phi can be found. Now, for variable substitutions L can be eliminated from the

equations without disturbing the symmetry of or affecting the validity of the method. So,

performing this kind of step and adopting the terminology used with the CG method the

various steps in the preconditioner pre conditioned conjugate gradient method that can be

obtained.



So,  essentially  in  top  of  the  CG  you  use  some  sort  of  a  preconditioner  to  get  a

preconditioner or precondition CG. Now, what happens to the original algorithm now?

Now, previously  we have  seen  the  algorithm for  the  conjugate  gradient.  Now, what

happens to the original algorithm?
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For pre conditioned CG algo. So, first is that again you have to choose starting direction.

So, that is important to get that you calculate r naught b minus a phi naught now you

iterate starting at n until convergence. So, that is the criteria. So, the next step you do that

you choose the factor d direction like alpha n equals to r n transpose P inverse r n divided

by d transpose A d n.

Now, the third step is that you obtain new phi, such that phi n plus 1 equals to phi n plus

alpha n d n. Fourth step you calculate the new residual. So, calculate that like r n plus 1

equals  to  r  n  minus  alpha  n  A d  n.  Then  you  calculate  essentially  the  coefficient;

coefficient to conjugate residual like beta n plus 1 equals to r n plus 1 transpose r n plus 1

divided by r n transpose r n you get P inverse here. So, that is where your P conditioning

system would come.

So, here you get the P inverse r n plus 1 and here you get P inverse r n and then you

finally, obtain new conjugated search direction like. So, this is n plus 1. So, conjugated

search direction like d n plus 1 is P inverse r n plus 1 plus beta n plus 1 d n.



Now, if you look at from the previous step of conjugate gradient, here you get the new

conjugated search directions using beta n and d n and there is no preconditioner. But,

when you look at  this  preconditioning system this  preconditioners  are  coming to the

picture.  So, these are actually developed with a wide spectrum of sophistication with

varying  diagonal  matrix  whose  elements  are  also  diagonal  and  for  like  Jacobi

preconditioner and other things.

So,  essentially  these  are  using  the  different  kind  of  methods  or  different  kind  of

preconditioning CG methods and the different factorizations would lead to different class

of problems. So, we will stop here today and discuss the other things in the subsequent

class.

Thank you.


