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Welcome back and we will  still  continuing our  discussion  on iterative  methods.  So,

where we stopped in the last lecture is on the conjugate gradient and today, we are going

to discuss on the slightly advanced version of conjugate gradient or a separate class of

that kind of method call the bi-conjugate gradient and why it is required because as we

have seen in CG method this is more for the symmetrical system, but practically the large

systems that we solve as a linear system they are non-symmetrical.

So, once you have a non-symmetrical matrix you need to do the transformation using the

technique that we have used in the CG and then the new process or the method is called

as the bi CG.
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So, what we look at today is that the in the bi CG approach essentially you transform the

symmetrical matrix or transform the non-symmetrical system to a symmetrical one by

using  CG  or  conjugate  gradient  method.  So,  here  the  process  or  the  underlying

phenomena will remain pretty much similar, but what happens since all your realistic



problems are asymmetrical in nature; they are not going to give you the symmetrical

matrix. So, symmetrical matrix only the CG can solve symmetrical matrix.

So, if you do not have a symmetrical matrix, like a non symmetrical or anti symmetric

system which is essentially the outcome of your realistic system in that case CG cannot

be applied.  So, what you need to  do? You need to  this  realistic  system you need to

transform them to a symmetric one. So, essentially what you do? You first transform

them to a transform the non symmetrical system to a symmetrical one and then and the

way it is done.

So, you have so, you introduce some sort of an dummy variable dummy variable here or

original system of equation is A phi equals to b. Now, you introduce a dummy variable

which is phi hat then the transformation takes place like 0 A A transpose with phi hat phi

equals to b 0. So, that is what you do that and using these dummy variable you can

through  this  particular  process  you  can  convert  this  unsymmetrical  or  system  to  a

symmetrical one.

Now, when you apply to this kind of system, this kind of transformation process so, the

actual CG process goes or results into two sequence of CG like vectors. So, this is vector

1 and this is vector 2. So, theoretically this particular one splits into two different vectors

which are looks like an CG vectors and then the ordinary sequence based on the original

system with the coefficient matrix A from A you calculate phi and from A transpose you

calculate the dummy variable phi hat.

Now, because of these two series of vector the name has been coined as bi conjugate

gradient. Now, you have the when you looked at the conjugate gradient you have all the

series of residual vectors, you have the direction vectors like you have r, d and all sort of

vectors. Now, once you form the bi orthogonality of the residual in this system in this

method that can be achieved by this kind of equation like r hat at m transpose r n equals

to r hat n transpose r m equals to 0, where m is less than n.

Now, the  bi  conjugacy  of  the  search  direction  is  fulfilled  by  the  equation  d  hat  n

transpose A d m equals to d n transpose A transpose d hat m which is again 0, where m is

less than n.  Now, further  the sequence of the residuals and the search directions  are

constructed such that the ordinary form of one which is orthogonal to the shadow form;

so, this is the shadow form the A hat form is the shadow form the mathematically one



can represent like r hat at the level n transpose d m equals to r n transpose d hat m, where

m less than n.

Now, this  is  how now several variants  of this  particular  method which has irregular,

convergence with the possibility of breaking down and those are developed. Now, if you

this is the modification which come due to this shadow variable or the augmentation of

this variable with the dummy variable phi hat and then accordingly it will be change in

the algorithm.
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So,  if  you  look  at  the  algorithm  for  bi  conjugate  gradient  the  algorithm  gets  now

modified. So, what you do? You first choose starting direction. So, that is what the initial

thing one has to do. So, choose the starting direction like d naught equals to r naught

equals to d hat naught equals to r hat naught b minus A phi 0. Now, then you, obviously,

you need to iterate starting at n till convergence. So, that one has to do. So, you have to

iterate that till you get the convergence.

Then, next level you choose the factor in d direction. So, which will lead to calculation

of the alpha. So, alpha n would be now r hat n transpose r n divided by d hat n transpose

A d n. Now, then you obtain new phi like phi n plus 1 equals to phi n plus alpha n d n.

Now, calculate new residual r like r n plus 1 equals to r n minus alpha n A d n. Similarly,

you calculate the new residual r hat which is like r hat n plus 1 equals to r hat n minus

alpha n a transpose d hat n.



So, using the dummy or shadow matrix A transpose you get the. So, now, it is time to

calculate the coefficient to conjugate residual and that is through beta n plus 1 which is

going to be now r hat n plus 1 transpose r n plus 1 r hat n transpose r n and then you can

get new search direction that is d which will be d n plus 1 is r n plus 1 minus beta n plus

1 d n and similarly you get the new search direction along the shadow variable and that is

d hat which is going to be d hat n plus 1 equals to r hat n plus 1 beta n plus 1 d hat n.

So,  as  you see  the  difference  from the  conjugate  gradient  here  the  search  direction,

residual direction these are now splitted into two different directions and that is why it

calls  the bi CG. So, immediately one can see bi CG process takes the time what the

computational time is twice what CG is takes because of this.

Now, also as we have seen that for the conjugate gradient that one can have precondition

conjugate gradient in this case also it is possible to have preconditioned bi CG which can

actually improved the faster convergence or which can improve the rate of convergence

and make it  faster. So,  that  is  why sometimes  it  is  preferred to  use some kind of a

preconditioning and particularly for this case also you can have the precondition bi CG

and the difference would come from the algorithm of the.

(Refer Slide Time: 13:19)

So, this  would be the precondition  bi CG algo and again you need to start  with the

choose with the starting direction.  So,  choose starting  direction;  so,  that  means,  you



calculate r naught r hat naught equals to b minus A phi naught and d naught equals to P

inverse r naught and d hat naught equals to P transpose r hat naught.

So, this is the difference one can see immediately it deviates from the standard bi CG

algorithm because of this preconditioning matrix. Now, you can iterate starting at n till

convergence, then the next level is to you choose the factor in d direction. So, factor in d

direction. So, how do you find out? That it would be alpha n equals to r n transpose P

inverse r n then d hat n transpose A d n. So, that is how you get it.

So, here if you see because of this inclusion of the preconditioning system it slightly

deviate from the standard bi CG algorithm. Then you obtain the new phi such that phi n

plus 1 equals to phi n plus alpha n and d n. Now, calculate r the residual factor which

would be r n plus 1 equals to r n minus alpha n A d n and also similarly calculate the r hat

which is the along the direction of the shadow variable. So, that will give us r hat n plus

1 equals to r hat n minus alpha n A transpose d hat n, ok. Now, then as usual you need to

calculate the coefficient to conjugate residual.

So, which will get you beta n plus 1 equals to r hat n plus 1 that is transpose p inverse r n

plus 1 then r hat transpose p inverse r n. Then you get the new search direction that is one

along the original system d which would be d n plus 1 equals to p inverse r n plus 1 plus

beta n plus 1 d n and the along the d hat also. So, this would be d hat n plus 1 equals to P

transpose r hat n plus 1 plus beta n plus 1 d hat n. So, that is what you get with the

preconditioned system and then it differs from the CG.

So,  when  you  apply  the  preconditioning  matrix.  So,  that  makes  the  system  better

convergent. So, that is the idea of using preconditioning to now by this time if you look

at it we have discussed and so, many iterative methods and always there are certain level

of refinement with these process. Now, also there are some variants of bi CG algorithm.

Those are called CG s which is conjugate gradient square it could be bi CGSTAB that is

another algorithm or GMRES generalized minimum residual process.

So, these are there are different variants of bi CG algorithm which can be applied, but the

baseline algorithm remain as we have discussed here and this is with precondition and

this is without preconditioner. So, this one is without preconditioner and this one is with

P. And, the other variant like CGS, bi CGSTAB, GM residual baseline algorithm remains

pretty much same, now only the modifications are done as per the system.
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Now, we will talk about the thing is that we are talking about this iterative process or

iterative methods and we have discussed a different variants of iterative methods starting

from the simple one and till the bi CGS algorithm with preconditioner.

Now,  still  the  main  concern  remains  the  performance  of  an  iterative  method;

performance in terms of stability, in terms of convergence rate. So, always people look

for this iterative process how quickly it converges, so that you get the close to the exact

solution; how stable is that, so that it does not lead to any spurious oscillation in the

solution.  Also  the  computation  less  computational  overhead;  that  means,  the  cost  or

computing cost must be less.

So, these are the some performance parameter, which always lead to the scientist and

engineers to specially the applied mathematician to keep on working in this direction to

get slightly improved methods on the iterative process. Now, in that context since we are

talking about these convergence rate and these specifically the convergence rate not only

has to do it which class of iterative method, one uses also it detoriates with the large A if

the  scale  or  the  system size  increases  the  conversion  rate;  obviously, detoriates.  So,

always there is an effort how to improve this convergence rate.

So, one approach is that one can adopt to some sort of an multi-grid approach. So, which

means what you do here your computational grid is sort of get into a different level of

refinement one could be coarse, then it could be the medium, it could lead to the finer.



So, you can have solution from here then interpolate here get a solution here or come

back in these directions.  So, that is how you can improve the solution of the overall

system at a much faster rate.

So, what one can think about when you actually distribute the things in the different grid

level and you get a solution and then from there you move to the other grid level so the

convergence  can  be  always  improved.  Now, when  you  say  that,  with  that  kind  of

approach you one can improve that now what happens when this kind of system you see

an example some in a 1-dimensional grid what happens to that.
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This is an picture which shows the error modes or different error mode modes in 1D grid.

So, what it does is that, this is the different level of frequency or the wave frequency you

could see, and these are the high frequency oscillation. This is high and then if you come

this is much low frequency system or looks like an oscillatory system, low oscillatory

system. Now, what does that do? It is essentially it is shown when you have two coarse;

so, this is the high to low frequency oscillation which appear in the solution and that also

increases from coarse mesh to coarse grid to fine grid.

So, this is one thing that we keep on talking that your grid refinement can have lot of

impact on the solution, because not only from this kind of error point of view of the

solution. Once you refine the grid your grid spacing reduces that leads to I mean that



reduces your truncation error which is one of the major error or leading error in any

numerical approximation.

Now, in a coarse grid you can see the high frequency of short wavelength lambda; these

are the wavelength.  So, lambda here is the wavelength and we can see that the high

frequency of short wavelength lambda to low frequency of long wavelength lambda phi.

So, this is how high to low you have move and they are shown in these, where high

frequency errors essentially appears oscillatory over an element and easily sensed by the

iterative methods. So, these are the errors which are sort of sensed by your linear solver.

Now, frequency of the error also decreases as the lambda increases and you can see the

error becomes slowly as your lambda increases the error becomes smoother. So, here it is

much more high frequency oscillation slowly smoothening out then it smoothening out

and finally, you get a much smoother profile and this gets  worse. So, error becomes

increasing which is smoother over the grid as a only one small portion of the wavelength

live within any cell. So, these gets what is as the grid is further refined leading to high

number of equations and explaining the degradation in the rate of convergence as the size

of the system increases.

So, one hand we talk about that we should have a grid refinement because that reduces

the truncation error, but once you start refining the grid the matrix system, this will be A

would be much larger and here A would be much smaller. So, this will also become a

problem. So, this is where the multi-grid approach becomes handy to kind of take care of

these things. And, the so the multi grid approach actually what it does it improves the

convergence rate convergence rate of linear system.

So, we will stop here today and will take from here in the follow-up lectures.

Thank you.


