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Let us continue the discussion on the ODE and we are pretty much on the towards the 

last part of the discussion where we are looking at the system of ODEs. 

(Refer Slide Time: 00:25) 

 

And where we have stopped, we stopped with this theorem 1. So now we will look at 

the system of ODEs for sort of a linear system. 

(Refer Slide Time: 00:37) 
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And what we are going to look at, let us say we have system of, so we will look at linear 

systems. Let us say we have n ODEs form a linear system. If it is linear then we have 

like this,  

𝑦1
′ = 𝑎11(𝑡)𝑦1 + ⋯ + 𝑎1𝑛(𝑡)𝑦𝑛 + 𝑔1(𝑡) 

𝑦𝑛
′ = 𝑎𝑛1(𝑡)𝑦1 + ⋯ + 𝑎𝑛𝑛(𝑡)𝑦𝑛 + 𝑔𝑛(𝑡) 

 

So, we can write  

𝑦′ = 𝐴𝑦 + 𝑔 

So then now if you see this guy here if 𝑔 = 0 then this will lead to, so this will lead to 

𝑦′ = 𝐴𝑦 which is a homogeneous system. So let us say this is equation 4. This is 

equation 3. So otherwise, it remains non homogeneous. So, for linear system we write  

𝜕𝑓𝑖

𝜕𝑦𝑘
= 𝑎𝑗𝑘(𝑡) 

where 1 ≤ 𝑗 ≤ 𝑛, 𝑎𝑛𝑑 1 ≤ 𝑘 ≤ 𝑛, okay. 

 

Now the second theorem will talk about uniqueness and existence in linear case. So, 

theorem 2, which is talks about uniqueness and existence in linear case, okay. So, I 

would say that let the function 𝑎𝑗𝑘(𝑡) and 𝑔(𝑡) all be constant function of t on an open 

interval where t goes between 𝛼 𝑡𝑜 𝛽 containing t equals to 𝑡0. Then 3 or equation 3 

has a solution which is 𝑌(𝑡) on this interval which is unique, okay. 

(Refer Slide Time: 03:52) 

 

So, then we have theorem 3, which talks about superposition. So, all first order, second 

order, whatever we have looked at it also n dimensional ODEs are system of ODEs they 
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are valid like the linearity for homogeneous system. It is at any linear combination, any 

linear combination of solution of the homogeneous linear system, which is 4 is again a 

solution. 

 

In other words, the solutions of, the solution of 4 form a vector space whose vectors are 

functions. So, we can look at the proof quickly. Let us say for a linear combination like 

what we can say  

𝑦 = 𝑐1𝑦(1) + 𝑐2𝑦(2) 

which are the coming from two solutions 𝑦(1), 𝑦(2). So, we get  

𝑦′ = (𝑐1𝑦(1))′ + (𝑐2𝑦(2))′ 

So, which will again lead to  

𝑦′ = 𝑐1𝐴𝑦(1) + 𝑐2𝐴𝑦(2) 

which would be 

𝑦′ = 𝐴𝑦 

So, 𝑦 is also a solution. 

 

Now we can have also for this system of ODEs will have basis, general solution, 

Wronskian, all we have. So, a basis of solution of a homogeneous linear system on an 

interval let us say J, which is in t is a set of in solutions like 𝑦(1)(𝑡), 𝑦(2)(𝑡), … 𝑦(𝑛)(𝑡) 

which are they are linearly independent on J. 

 

So, a linear combination of all these which is let us say this kind of  

𝑌 = 𝑐1𝑦(1) + 𝑐2𝑦(2) + ⋯ + 𝑐𝑛𝑦(𝑛) 

is called the general solution where this 𝑐𝑖’s are arbitrary constant. So, if we fix the 

values of the constant, we obtain a particular solution. 

(Refer Slide Time: 07:31) 
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So, if we put n solutions like this together as an column matrix so we have  

𝑌 = [𝑦(1) … 𝑦(𝑛)] 

Then the determinant of this matrix would be the Wronskian. And so, the Wronskian 

of Y would be  

𝑊(𝑌) = [
𝑦1

(1)
⋯ 𝑦1

(𝑛)

⋮ ⋱ ⋮

𝑦𝑛
(1)

⋯ 𝑦𝑛
(𝑛)

] 

So, the solution forms a basis, so this solution forms a basis on J if and only if W is not 

equals to 0 at any t1 which belongs to J. Also, either W equals to 0 and J or W is nonzero 

everywhere on J, okay. 

 

So finally, the solution one can write this 𝑦 = 𝑌𝑐 where c is kind of  

𝑐 = [

𝑐1

⋮
𝑐𝑛

] 

which are the constant. Now let us see the constant coefficient system. So, whatever we 

have looked at for the second order ODEs and all these so they are going to be the 

similar for. So again, we consider any linear system which is in the form of 𝑌′ = 𝐴𝑌 

where the entries of n × n coefficient matrix are A which is  

𝐴 = [𝑎𝑗𝑘] 

okay. 

 

So. They are constant so they do not depend on so this is not a function of t. Now why 

we bother about with eigenvalues and eigenvector. So, suppose we try a solution for 
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this system like 𝑌 = 𝑋𝑒𝜆𝑡 and where x belongs to 𝑅𝑛. Then 𝑌′ = 𝜆𝑋𝑒𝜆𝑡. And we have 

a solution if and only if 𝑌′ = 𝐴𝑌 = 𝜆𝑋𝑒𝜆𝑡 = 𝐴𝑋𝑒𝜆𝑡. 

 

So, since 𝑒𝜆𝑡 not equals to 0 we get 𝜆𝑋 = 𝐴𝑋. So, or in the other way around or one 

can write 𝐴𝑋 = 𝜆𝑋. So, 𝜆 is the eigenvalue and 𝑋 is going to be the eigenvector of this 

system. 

(Refer Slide Time: 10:36) 

 

So, one can say 𝑌 = 𝑋𝑒𝜆𝑡 is a solution of solution of 𝑌′ = 𝐴𝑌 if and only if 𝜆 is an 

eigenvalue of A and 𝑋 is an eigenvector with eigenvalue 𝜆. So let us say if we recall 

this n × n matrix the characteristics equation is going to be a polynomial of degree n 

where the root should be 𝜆1, … 𝜆𝑛. Let us say sum may be the same if we have multiple 

roots. 

 

So let us say now say we have n solutions now. Then 𝑌(1) = 𝑋(1)𝑒𝜆1𝑡 , 𝑌(𝑛) = 𝑋(𝑛)𝑒𝜆𝑛𝑡. 

So, we have like that. Now you want to know if we have the basis of solutions. To see 

this the solutions, if the solutions are linearly independent, we can look at the 

Wronskian where this would be Wronskian of 𝑌(1) 𝑡𝑜 𝑌(𝑛). 

 

So, this we can write 

𝑊 = 𝑊(𝑌(1), … , 𝑌(𝑛)) = |
𝑋1

(1)
𝑒𝜆1𝑡 ⋯ 𝑋1

(𝑛)
𝑒𝜆𝑛𝑡

⋮ ⋱ ⋮

𝑋𝑛
(1)

𝑒𝜆1𝑡 ⋯ 𝑋𝑛
(𝑛)

𝑒𝜆𝑛𝑡

| 

169



 So, if we remember that for n × n the determinant of for n × n matrix, let us say B is 

an n × n matrix and determinant of B is not equals to 0. And that would be possible if 

the columns of matrix B are linearly independent. 

 

Then we have the solutions. These are the solutions.  

(Refer Slide Time: 13:54) 

 

And so now we can look at the general solution. So again, the general solution to find 

out let us say if the matrix A in the system 𝑌′ = 𝐴𝑌 has a basis of eigenvectors of Rn in 

linearly independent eigenvectors, then the corresponding solutions are 𝑌(1) 𝑡𝑜  𝑌(𝑛). 

So, they are also linearly independent as function on R and the general solution is given 

by  

𝑌 = 𝑐1𝑌(1) +  … + 𝑐𝑛 𝑌(𝑛) 

So now we do the graphing solution in the phase plane, okay. So, consider a system of 

two linear ODEs with constant coefficients. So, like 𝑌′ = 𝐴𝑌. So, these are two linear 

ODEs. That is what we are considering. So that means we will have  

𝑦1
′ = 𝑎11𝑦1 + 𝑎12𝑦2 

And  

𝑦2
′ = 𝑎21𝑦1 + 𝑎22𝑦2 

Now we can graph this  

𝑌(𝑡) = [
𝑦1(𝑡)
𝑦2(𝑡)

] 

in the usual way in R3 or we can graph these as a parametric curve in y and y2 plane 

which is so 𝑦1 on 𝑦2 plane. This is called the phase plane. So, the curve this 𝑌(𝑡) in the 
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phase plane is called the trajectory or orbit. Several such curves which indicate the 

behavior of the system are called the phase portrait. So now note if Y is 0 then 𝑌′ is 0. 

So, AY is also 0. 

 

We have a constant solution. And so, this Y equals to 0 is called the known as critical 

point or equilibrium point. In a linear system with constant coefficient there can be one 

critical point. But in general, there could be more than one such point. 

(Refer Slide Time: 16:55) 

 

So, from calculus what we know  

𝑑𝑦2

𝑑𝑦1
=

𝑦2
′ 𝑑𝑡

𝑦1
′𝑑𝑡

=
𝑦2

′

𝑦1
′ =

𝑎21𝑦1 + 𝑎22𝑦2

𝑎11𝑦1 + 𝑎12𝑦2
 

And as 𝑦1, 𝑦2 tends to 0, 
𝑑𝑦2

𝑑𝑦1
 tends to 0 by 0 which is undefined. Now we can take an 

example and then close the discussion of this particular section. 

 

So let us say we have 𝑌′ = 𝐴𝑌 = [
−3 1
1 −3

] 𝑌 or what we have 

𝑦1 = −3𝑦1 + 𝑦2 

𝑦2 = 𝑦1 − 3𝑦2 

So that can be capital so that we can write in that fashion. So let us say we substitute  

𝑌 = 𝑋𝑒𝜆𝑡 

And then we get 𝐴𝑋 = 𝜆𝑋. So, once we substitute that this is what we get. 
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And determinant of (𝐴 − 𝜆𝐼), which gives us characteristics polynomial which is 0. So 

doing this  

𝜆2 + 6𝜆 + 8 = 0 

𝜆1 = −2, 𝜆2 = −4 

Now we consider first 𝜆1 = −2. Then the eigenvector we have the linear system. So, 

we will get  

[
−1 1
1 −1

] {
𝑥1

𝑥2
} = [

0
0

] 

These are the component of 𝑋(1). So, we get 𝑋(1) = [
1
1

] as eigenvector. 

(Refer Slide Time: 19:18) 

 

Now similarly for 𝜆2 = −4 we get 𝑋(1) = [
1

−1
]. So, this gives a general solution Y is  

𝑌 = [
𝑦1

𝑦2
] = 𝑐1𝑦1 + 𝑐2𝑦2 = 𝑐1 [

1
1

] 𝑒−2𝑡 + 𝑐2 [
1

−1
] 𝑒−4𝑡 

So, if we look at the phase portrait that would looks like so our system goes like this.  

 

This is direction and guys would look like and so this will go through like this. So, like 

this. So that comes like that. So, the phase portrait would so which is sort of a stable 

and proper node. So that will look like that. Now here we have five types of critical 

points. Now like we have improper nodes, proper nodes, saddle points, centers and 

spiral nodes, sorry points, spiral points. 

 

So, these five types of critical points depending on the geometric shape of the 

trajectories near them. 
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(Refer Slide Time: 22:01) 

 

And we can just have a quick look of them. So let us say we take in first one is the 

improper node. So, an improper node is a critical point P0 at which all trajectories or all 

the trajectories except for two of them have the same limiting direction of the tangent. 

The two exceptional trajectories also have a limiting direction of the tangent at P0 which 

however is different. 

 

So just like we can see this particular plot here and we can see this has an improper 

node at 0 in its phase portrait. The common limiting direction at 0 is that the eigenvector 

of 𝑋(1) = [1 1]𝑇. Because 𝑒−4𝑡 goes to 0 faster than 𝑒−2𝑡 goes to 0 as t increases. The 

two exceptional limiting tangents directions are, so the tangent directions are 𝑋(2) =

[1 −1]𝑇 and −𝑋(2) = [−1 1]𝑇, okay. 

 

Now we take second one is the proper node. So proper node is a critical point P0 at 

which every trajectory has a definite limiting direction and for any given direction dP0 

there is a trajectory having d as a limiting direction. Like one can see 

𝑌′ = [
1 0
0 1

] 𝑌 

where 𝑦1
′ = 𝑦1, 𝑦2

′ = 𝑦2. So, we can see this case if this is 𝑦1, this is 𝑦2, then these are 

all going this direction like this. 

 

So, like that, so this is 𝑦2. So indeed, the matrix is in unit matrix. Its characteristic 

equations would be 
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(1 − 𝜆)2 = 0 

has root 𝜆 equals to 1. We can take this  

𝑦 = 𝑐1 [
1
0

] 𝑒𝑡 + 𝑐2 [
0
1

] 𝑒𝑡 

So here it will give you  

𝑐1𝑦2 = 𝑐2𝑦1 

That is what it gives you. 

(Refer Slide Time: 25:12) 

 

Now we come to 3 is the saddle point. A saddle point is a critical point P0 at which there 

are two incoming trajectories, two outgoing trajectories. And all other trajectories in a 

neighborhood of P0 bypass P0, okay. So, we have then  

𝑌′ = [
1 0
0 −1

] 𝑌 

So, 𝑦1
′ = 𝑦1, 𝑦2

′ = 𝑦2. It has a saddle point at the origin. So, if you look at the plot 𝑦1, 

𝑦2. so, the curves go like this. This goes like this. 

 

This goes like, sorry this goes in this direction. So, this goes in this direction. Now the 

trajectories of the systems here. Now this guy’s characteristics equation would be  

(1 − 𝜆)(−1 − 𝜆) = 0 

So, 𝜆1 = 1 and 𝜆2 = −1. For this guy the eigenvector would be [1 0]𝑇 and for this 

guy [0 1]𝑇. So, the general solution one can write  

𝑦 = 𝑐1 [
1
0

] 𝑒𝑡 + 𝑐2 [
0
1

] 𝑒𝑡 
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So, 𝑦1 = 𝑐1𝑒𝑡, 𝑦2 = 𝑐2𝑒𝑡. So, 𝑦1, 𝑦2 is essentially constant. So, this is a family of 

hyperbola as shown here. Now we look at the center. Now Centre is critical point that 

is enclosed by infinite many close trajectories. So, the system would be  

𝑌′ = [
0 1

−4 0
] 𝑌 

𝑦1
′ = 𝑦2, 𝑦2

′ = −4𝑦1. So, the picture if we draw, this would look like 𝑦1. This is 𝑦2. 

 

So, these are the curve. So, this would be and the characteristics here would be  

𝜆2 + 4 = 0 

So, 𝜆1,2 = ±2𝑖. So, for 2i the eigenvector is [1 2𝑖]𝑇 and for -2i this is [1 −2𝑖]𝑇. So, 

it has a complex general solution. 

(Refer Slide Time: 28:21) 

 

So, the solution one can write  

𝑦 = 𝑐1 [
1
2𝑖

] 𝑒2𝑖𝑡 + 𝑐2 [
1

−2𝑖
] 𝑒−2𝑖𝑡 

So, you will have  

𝑦1 = 𝑐1𝑒2𝑖𝑡 + 𝑐2𝑒−2𝑖𝑡 

𝑦2 = 2𝑖𝑐1𝑒2𝑖𝑡 − 2𝑖𝑐2𝑒−2𝑖𝑡 

So, the transformation of the solution to the real form by Euler formula but we may just 

be curious to see what kind of eigenvalues we obtain in the case of center. Accordingly, 

we can start and so if we derive the equation then what we write 𝑦1
′ = 𝑦2, −𝑦2

′ = 4𝑦1. 

 

Then the product of the left side must be equal to the product of the right side. So,  

4𝑦1𝑦1
′ = −𝑦2𝑦2

′  
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So, by integration we get  

2𝑦1
′ +

𝑦2
2

2
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

So, this is a family of ellipse I mean enclosing the center at the origin which is like this. 

Now the other example which is example 5 is the spiral point. 

 

So, the spiral point is a critical point P0 about which trajectories are spiral approaching 

P0 as t0 tends to infinity. So, we will get  

𝑌′ = [
−1 1
−1 −1

] 𝑌 

𝑦1
′ = −𝑦1 + 𝑦2, 𝑦2

′ = −𝑦1 − 𝑦2, has a spiral point at his origin. So, the characteristics 

equation would be  

𝜆2 + 2𝜆 + 2 = 0 

So, 𝜆1 = −1 + 𝑖, 𝜆2 = −1 − 𝑖. 

So, we can find out the corresponding eigenvector. And so, the eigenvectors we will 

find out and we can write down the general solution. So, this is  

𝑦 = 𝑐1 [
1
𝑖

] 𝑒(−1+𝑖)𝑡 + 𝑐2 [
1

−𝑖
] 𝑒(−1−𝑖)𝑡 

So again, if you transform this complex solution to the real general solution by Euler 

formula. So now, we can simply multiply the first equations here by 𝑦1 and the second 

by 𝑦2. 

 

So, what we get. So, we now introduce polar coordinates, and let us say  

𝑟2 = 𝑦1
2 + 𝑦2

2 

So, differentiating we will get  

2𝑟𝑟′ = 2𝑦1𝑦1
′ + 2𝑦2𝑦2′ 

(Refer Slide Time: 31:53) 
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Hence the previous equations can be written as that our 𝑟𝑟′ = −𝑟2. So, you get  

ln |𝑟| = −𝑡 + 𝑐∗ 

So, this is essentially which will give 𝑟 = 𝑐𝑒−𝑡. So, if you draw that this is 𝑦1, this is 

𝑦2. So, we kind of start like that. So, some sort of a spiral going in that kind of 

directions. Now so this is how we can have these kinds of things for system of ODEs 

and all this. 

 

So, like you can see when you have the system of ODEs also that satisfy all the 

properties that we have talked about second order or first order system. So, we will stop 

the discussion on ODEs pretty much here. I will conclude the discussion on ODE. Now 

we will go to the next session. 
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