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And on ODEs, now just before moving to the partial differential equation, we will just 

touch upon quickly the Fourier and the Laplace so that this would be a bit of making 

some connectivity between this ODEs and while looking at the numerical part. 
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So, what we are going to look at here, I mean, as I said just quickly touch upon the 

Fourier. So now first thing is that we will just look at the Fourier analysis. Now this is, 

this Fourier analysis actually convince periodic phenomena. So, this is a periodic 

phenomena. And they occur quite frequently in engineering applications. So, like 

vibrations, alternative currents, rotating part of machine such that. 

 

Now the when we have that kind of physical problem the related periodic function from 

the Fourier series. So, representing this complicated function in terms of simple 

periodic and sine and cosine functions gives many insights into the phenomenon and 

that representation is called the Fourier series. And sequence of investigation made in 

this way is called the Fourier analysis. 

 

Now the basic concepts remain that the Fourier series are infinite series. So, these are 

infinite series designed to represent a generic periodic function in terms of simple ones 
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like sines, cosines, something like that. Also apart from this analysis, this they constitute 

an important tool for solving ODEs and PDEs. So that is also important. 

 

So now so this is essentially Fourier series the basic tool for representing periodic 

function which play an important role in applications. Now let us say if you say the 

function 𝑓(𝑥) is called periodic, is periodic 𝑓(𝑥 + 𝑝) is 𝑓(𝑥). So, p is any positive 

number, any positive number. So, p is also called the period of the function like one can 

see, let us say if I have a function like that. So, this is called p. 

 

So, this is a 𝑓(𝑥) and this is x. So now the smallest possible period is called the 

fundamental period. Periodic functions are sines and cosines. I mean like examples of 

𝑥, 𝑥2, 𝑒𝑥 such that. Now some properties like a p is in period then 2p, 3p or np is period 

of the function when we can write  

𝑓(𝑥 + 𝑛𝑝) = 𝑓(𝑥 + (𝑛 − 1)𝑝) = 𝑓(𝑥 + (𝑛 − 2)𝑝) = 𝑓(𝑥) 

Now if 𝑓(𝑥) and let us say 𝑔(𝑥) have period of p then 𝑎𝑓(𝑥) + 𝑏𝑓(𝑥) where 𝑎, 𝑏 are 

constants also has period p. So, this is sort of an some properties. 

(Refer Slide Time: 04:57) 

 

Now typically the periodic function 𝑓(𝑥) is defined in a period of 2𝜋 interval and 

simple periodic functions like sin x, cos x, sin 2x so on. And they have a period of 2𝜋. 

So, these functions are called the trigonometric functions and they are kind of 

trigonometric system of function. Now 𝑓(𝑥) through the if you represent this 𝑓(𝑥) 

through the linear combination then we can write  

𝑓(𝑥) = 𝑎0 + 𝑎1 cos 𝑥 + 𝑏1 sin 𝑥 + ⋯ 
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And so, like that which is 

𝑓(𝑥) = 𝑎0 + ∑(𝑎𝑛 cos 𝑛𝑥 + 𝑏𝑛 sin 𝑛𝑥)

∞

𝑛=1

 

So here the assuming these coefficients 𝑎𝑛 and 𝑏𝑛 are such that the summation 

converges to 𝑓(𝑥). Now as you see this right hand side expression this is a linear 

combination with the sum having a period of 2𝜋, okay. So, the this is what gives you 

an idea of the definition of a Fourier series. 

 

And the coefficients one can find out if the period is a 2𝜋  

𝑎0 =
1

2𝜋
∫ 𝑓(𝑥)𝑑𝑥

𝜋

−𝜋

 

𝑎𝑛 =
1

𝜋
∫ 𝑓(𝑥) cos 𝑛𝑥 𝑑𝑥

𝜋

−𝜋

 

where n goes 1, 2 like that. And 

𝑏𝑛 =
1

𝜋
∫ 𝑓(𝑥) sin 𝑛𝑥 𝑑𝑥

𝜋

−𝜋

 

So, one can look at this different function like cos x, cos 2x and they are I mean this is 

very simple, one can plot these things even any simple mathematical tools or. 

 

Now we get down Euler formula. So, the key to the Euler formula is the orthogonal of 

the trigonometric system. So, this is a very basic and important which actually appears 

quite often in many places. Using this orthogonality, we can derive this. Now there is a 

theorem, let us see theorem 1 which we say that this is an orthogonality. So, we can 

write it in the next page. 

(Refer Slide Time: 07:52) 
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Let us say theorem 1, which talks about orthogonality of the trigonometric system. We 

said the trigonometric system which is sin x, cos x, sin 2x, cos 2x something like that 

is orthogonal on the interval which is −𝜋 ≤ 𝑥 ≤ 𝜋. Hence also on 0 ≤ 𝑥 ≤ 2𝜋; that is 

the integral of the product of any two functions, any two functions like sin x, cos x, 

sin2x and so on over that interval is also 0. 

 

So, which means let us say  

∫ cos 𝑛𝑥 cos 𝑚𝑥 𝑑𝑥
𝜋

−𝜋

= 0 

it would be 0 for n not equals to m. Similarly 

∫ sin 𝑛𝑥 sin 𝑚𝑥 𝑑𝑥
𝜋

−𝜋

= 0 

equals to 0 for n not equals to m. So similarly, you can have  

∫ sin 𝑛𝑥 cos 𝑚𝑥 𝑑𝑥
𝜋

−𝜋

= 0 

which is zero and n not equals to m and n equals to m. So, there are like other would be  

∫ cos 𝑛𝑥 cos 𝑚𝑥 𝑑𝑥
𝜋

−𝜋

= 𝜋 

where n equals to m. 

 

Similarly,  

∫ sin 𝑛𝑥 sin 𝑚𝑥 𝑑𝑥
𝜋

−𝜋

= 𝜋 
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where n equals to m. So, this is the orthogonality condition. And so, this proof is quite 

straightforward. You can look at any of the books which are given. So, we are not going 

into the details of that. Now how do you find the Euler formula, so that is important. 

(Refer Slide Time: 11:21) 

 

Now the derivation of that. So, we have the function effects, which is  

𝑓(𝑥) = 𝑎0 + ∑(𝑎𝑛 cos 𝑛𝑥 + 𝑏𝑛 sin 𝑛𝑥)

∞

𝑛=1

 

So, if we integrate both sides  

∫ 𝑓(𝑥)𝑑𝑥
𝜋

−𝜋

= ∫ 𝑎0𝑑𝑥
𝜋

−𝜋

+ ∑ 𝑎𝑛

∞

𝑛=1

∫ cos 𝑛𝑥 𝑑𝑥
𝜋

−𝜋

+ ∑ 𝑏𝑛

∞

𝑛=1

∫ sin 𝑛𝑥 𝑑𝑥
𝜋

−𝜋

 

So, this guy is contributing to 0, this guy will contribute to 0. So, this would be  

∫ 𝑓(𝑥)𝑑𝑥
𝜋

−𝜋

= 2𝜋𝑎0 

So, we get  

𝑎0 =
1

2𝜋
∫ 𝑓(𝑥)𝑑𝑥

𝜋

−𝜋

 

Now similarly, if this let us say if we multiply both side by cos mx and integrate it, so 

what do we get  
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∫ 𝑓(𝑥) cos 𝑚𝑥 𝑑𝑥
𝜋

−𝜋

= ∫ 𝑎0 cos 𝑚𝑥 𝑑𝑥
𝜋

−𝜋

+ ∑ 𝑎𝑛

∞

𝑛=1

∫ cos 𝑛𝑥 cos 𝑚𝑥 𝑑𝑥
𝜋

−𝜋

+ ∑ 𝑏𝑛

∞

𝑛=1

∫ sin 𝑛𝑥 cos 𝑚𝑥 𝑑𝑥
𝜋

−𝜋

 

 

So, these guys contribute to 0, so last guy will be there. 

𝑎𝑚 =
1

𝜋
∫ 𝑓(𝑥) cos 𝑚𝑥 𝑑𝑥

𝜋

−𝜋

 

And similarly, one can show  

𝑏𝑚 =
1

𝜋
∫ 𝑓(𝑥) sin 𝑚𝑥 𝑑𝑥

𝜋

−𝜋

 

So, these are the values that one can find by deriving this Eulerian formula. 

(Refer Slide Time: 14:59) 

 

Now we can have another theorem which is called the convergence theorem, theorem 

2 which is on convergence. So here let 𝑓(𝑥) be periodic with a period of 2𝜋 and 

piecewise continuous interval which is −𝜋 ≤ 𝑥 ≤ 𝜋. So furthermore, let 𝑓(𝑥) have a 

left hand derivative and right hand derivative at each point of that interval, then the 

Fourier series 𝑓(𝑥) convergence to 𝑓(𝑥) except at point 𝑥0 where 𝑓(𝑥) is discontinued. 
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Second, at the point of discontinuity at 𝑥0 Fourier series converges to the average of the 

left hand right hand limits of 𝑓(𝑥) at 𝑥0. So that means so for example left hand right 

hand limits let us say  

𝑓(𝑥0 − 0) = lim
ℎ→0

𝑓(𝑥0 − ℎ) 

here h tends to 0 with h greater than 0. So, the right hand limit would be 

𝑓(𝑥0 + 0) = lim
ℎ→0

𝑓(𝑥0 + ℎ) 

as h tends to 0 with h positive. 

 

So, one of the example one can see here is that 𝑓(𝑥) let us say this is 1, so the function 

goes like here and this point if (1 − 0) and this is the point if (1 + 0), this is also 1. So,  

𝑓(1 − 0) = 1 

𝑓(1 + 0) =
1

2
 

So, the function the 𝑓(𝑥) is defined as  

𝑓(𝑥) = {
𝑥2 𝑖𝑓 𝑥 < 1
𝑥

2
 

 

So, this is the function where you can see the left hand and right hand limit. 

(Refer Slide Time: 17:24) 

 

Now the function of any period so it just like let us say the so it would be easier function 

of any period which means that the transition from period 2𝜋 to 2L and the Fourier 

series we can write  
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𝑓(𝑥) = 𝑎0 + ∑ (𝑎𝑛 cos
𝑛𝜋

𝐿
 𝑥 + 𝑏𝑛 sin

𝑛𝜋

𝐿
𝑥)

∞

𝑛=1

 

So, this is going for and the coefficients would be 

𝑎0 =
1

2𝐿
∫ 𝑓(𝑥)𝑑𝑥

𝜋

−𝐿

 

𝑎𝑛 =
1

𝐿
∫ 𝑓(𝑥) cos

𝑛𝜋

𝐿
𝑥 𝑑𝑥

𝐿

−𝐿

 

𝑏𝑛 =
1

𝐿
∫ 𝑓(𝑥) sin

𝑛𝜋

𝐿
𝑥 𝑑𝑥

𝐿

−𝐿

 

So here both these cases n goes from 1 to 2. So, I mean one can again like the previous 

one, one can derive this. So now we talk of some even and odd functions. Like a 

function 𝑓(𝑥) it can be said even, is even if 𝑔(−𝑥) = 𝑔(𝑥) or a function 𝑓(𝑥) is odd if 

𝑔(−𝑥) = −𝑔(𝑥). 

(Refer Slide Time: 19:40) 

 

So, like similarly we can have a theorem like Fourier cosine and sine series like the 

Fourier series of an even function 𝑓(𝑥) for a period of 2L is a Fourier cosine series 

containing only the cosine terms like 𝑓(𝑥) would be  

𝑓(𝑥) = 𝑎0 + ∑ 𝑎𝑛 cos
𝑛𝜋

𝐿
 𝑥

∞

𝑛=1

 

𝑎0 =
1

𝐿
∫ 𝑓(𝑥)𝑑𝑥

𝐿

0

 

𝑎𝑛 =
2

𝐿
∫ 𝑓(𝑥) cos

𝑛𝜋

𝐿
𝑥 𝑑𝑥

𝐿

0
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n is 1, 2 like that. 

 

Second the Fourier series of an odd function 𝑓(𝑥) in a period of 2L is a Fourier sine 

series containing only the cosine terms which containing only the sine terms. So, the 

𝑓(𝑥) would be 

𝑓(𝑥) = ∑ 𝑏𝑛 sin
𝑛𝜋

𝐿
 𝑥

∞

𝑛=1

 

And 

𝑏𝑛 =
2

𝐿
∫ 𝑓(𝑥) sin

𝑛𝜋

𝐿
𝑥 𝑑𝑥

𝐿

0

 

So similarly, linearity of this Fourier series the Fourier coefficients 𝑎, of a sum 𝑓1 + 𝑓2. 

So, this is sum and linearity. 

 

So, the Fourier coefficients a and the of a sum 𝑓1 + 𝑓2 are the sum of the corresponding 

Fourier coefficients of 𝑓1 𝑎𝑛𝑑 𝑓2 where both 𝑓1, 𝑓2 are function. Or second the Fourier 

coefficients c into f are the c times of the corresponding Fourier coefficients of f. So 

essentially you can I mean have the linear combinations of the Fourier functions and 

the scalar multiplication of that. 

 

Now Fourier series we can apply to system and look at how we get solution for this 

kind of system. 

(Refer Slide Time: 22:24) 

 

And like for example let us say let us consider an ODE which is  
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𝑦′′ + 0.05𝑦′ + 25𝑦 = 𝑟(𝑡) 

So, this is an ODE where we can, here 𝑟(𝑡) is in periodic function which is given as  

𝑟(𝑡) = {
𝑡 +

𝜋

2
−𝜋 ≤ 𝑡 < 0

−𝑡 +
𝜋

2
0 ≤ 𝑡 < 𝜋

 

So,  

𝑟(𝑡 + 2𝜋) = 𝑟(𝑡) 

So, we are going to find out the steady state solution, okay. 

 

So here if you compare this equation like  

𝑦′′ + 𝑝𝑦′ + 𝑞𝑦 = 𝑟 

then here p is 0.05, q is 25 and if you see this is 
𝑐

𝑚
= 𝑎 and this is an 

𝐾

𝑚
= 𝑏. so,  

𝑎2 − 4𝑏 = −99.99 < 0 

So, this is an over damped case. Now and the steady state solutions are particular 

integral of 𝑦𝑝 of a. So, we can find out the Fourier series now. 

 

So, series, cosine series we will get;  

𝑎0 =
1

𝜋
∫ 𝑟(𝑡)𝑑𝑡

𝜋

0

 

So here after integration we will get  

𝑎0 =
2

𝜋
∫ 𝑟(𝑡) cos 𝑛𝑡 𝑑𝑡

𝜋

0

 

which after integration and doing all this, so we will get  

𝑎0 =
2

𝜋
[
1 − cos 𝑛𝜋

𝑛2
] 

So,  

𝑎1 =
4

𝜋
 

𝑎2 = 0 

𝑎3 =
4

32𝜋
 

𝑎5 = 0 

So 

𝑟(𝑡) =
4

𝜋
[cos 𝑡 +

1

32
cos 3𝑡 +

1

52
cos 5𝑡 + ⋯ ] 
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and like that. So, we can replace this one in the ODE. Then we can apply the 

superposition principle and find out the steady state solution for this one, okay. 

(Refer Slide Time: 25:57) 

 

So now if you put that 𝑟(𝑡) and then you can have the generic solution of the system 

like 

𝑦𝑛 = 𝐴𝑛 cos 𝑛𝑡 + 𝐵𝑛 sin 𝑛𝑡 

which is a generic form of  

𝑅𝐻𝑆 =
4

𝜋

cos 𝑛𝑡

𝑛2
  

So, the assumed solution would be in this particular form. Now if you take the 

derivative of this and put it in back, so what we will finally get that we will get, So, 

there are lot of algebra here, which one has to do. I mean, basically you just take the 

derivative of the solution and put it back in the ODE. 

𝑦𝑛 =
4

𝑛2𝜋
[

25 − 𝑛2

(25 − 𝑛2)2 + 𝑛2 − 0.052
] cos 𝑛𝑡

+
4

𝑛2𝜋
[

𝑛20.05

(25 − 𝑛2)2 + 𝑛2 − 0.052
] sin 𝑛𝑡  

So, the solution would 

𝑦 =
4

𝜋
∑ [

(
(25 − 𝑛2)2

𝑛2 ) cos 𝑛𝑡 + 0.05 sin 𝑛𝑡

(25 − 𝑛2)2 + 𝑛20.052
]

𝑛=1,3,5,…∞
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 So, this would be the, so once you get this particular solution from here, one can find 

out the steady state solution. So, we will stop here and continue this discussion in the 

next session. 
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