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Okay, so let us continue our discussion on the Fourier analysis now. So, we are looking 

at the Fourier series and now we will look at the Fourier analysis and then touch little 

bit on the Laplace. 

(Refer Slide Time: 00:39) 

 

So now moving ahead, so this is what we are going to look at is the theorem of 

Parseval’s theorem. So, what it talks about for a periodic function of 𝑓(𝑥), which is in 

the period of 2L that it is written as 

2𝑎0
2 + ∑(𝑎𝑛

2 + 𝑏𝑛
2)

∞

𝑛=1

=
1

𝐿
 ∫ 𝑓(𝑥)2

𝐿

−𝐿

𝑑𝑥 

where 𝑎𝑛 𝑎𝑛𝑑 𝑏𝑛 of the Fourier coefficients and the right hand side is the root mean 

square of 𝑓(𝑥) in one period. 

 

So, this is RMS of 𝑓(𝑥) in period of minus L to L. So that is in within one period. Now 

we would move to the Fourier analysis. Now the Fourier series can be written in 

complex form, which simplifies calculation in many cases. And this complex form can 

be obtained because in complex analysis. The exponential function is related to the sine 

and cosine function by Eulerian formula like 
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𝑒𝑖𝑥 = cos 𝑥 + 𝑖 sin 𝑥 

Similarly, one can have  

𝑒−𝑖𝑥 = cos 𝑥 − 𝑖 sin 𝑥 

Now the formal definition of the complex Fourier series for a period for a function 𝑓(𝑥) 

with a period of 2L is written 

𝑓(𝑥) = ∑ 𝑐𝑛

∞

𝑛=−∞

𝑒𝑖
𝑛𝜋𝑥

𝐿  

And  

𝑐𝑛 =
1

2𝐿
∫ 𝑓(𝑥)

𝐿

−𝐿

𝑒−𝑖
𝑛𝜋𝑥

𝐿 𝑑𝑥 

where n is 0, ±1, ±2 … and so on. 

 

So, the derivation of complex Fourier series also one can look at. These are I mean 

basically quite standard thing that one can find in a textbook. So now we will just move 

to the Fourier integral. Now the Fourier series to Fourier integral, now Fourier series is 

a powerful tool for problem solving, problems which are having periodic functions 

within a finite interval. 

 

Now it may be possible there are functions which are non-periodic in nature. And then 

in that case one can use Fourier integral to handle the same. Now this is an extension 

of Fourier series. 

(Refer Slide Time: 03:44) 
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So let us say we consider a function 𝑓𝐿(𝑥) in period of 2L, then it can be represented as  

𝑓𝐿(𝑥) = 𝑎0 + ∑(𝑎𝑛 cos 𝜔𝑛𝑥 + 𝑏𝑛 sin 𝜔𝑛𝑥)

∞

𝑛=1

 

where 𝜔𝑛 =
𝑛𝜋

𝐿
. Now if we insert Eulerian formula here, then the coefficients we can 

write this guy as  

𝑓𝐿(𝑥) =
1

2𝐿
∫ 𝑓𝐿(𝑉)

𝐿

−𝐿

𝑑𝑉

+
1

𝐿
 ∑ [cos 𝜔𝑛𝑥 ∫ 𝑓𝐿(𝑉)

𝐿

−𝐿

cos 𝜔𝑛𝑉 𝑑𝑉

∞

𝑛=1

+ sin 𝜔𝑛𝑥 ∫ 𝑓𝐿(𝑉)
𝐿

−𝐿

sin 𝜔𝑛𝑉 𝑑𝑉] 

 

So, 𝑉 is the integration variable here. And  

∆𝜔 = 𝜔𝑛+1 − 𝜔𝑛 =
𝜋

𝐿
 

which is now one can write  

1

𝐿
=

∆𝜔

𝜋
 

So, this can be rewritten as  

𝑓𝐿(𝑥) =
1

2𝐿
∫ 𝑓𝐿(𝑉)

𝐿

−𝐿

𝑑𝑉

+
1

𝜋
 ∑ [cos 𝜔𝑛𝑥 ∆𝜔 ∫ 𝑓𝐿(𝑉)

𝐿

−𝐿

cos 𝜔𝑛𝑉 𝑑𝑉

∞

𝑛=1

+ sin 𝜔𝑛𝑥 ∆𝜔 ∫ 𝑓𝐿(𝑉)
𝐿

−𝐿

sin 𝜔𝑛𝑉 𝑑𝑉] 

So, this representation is valid for fixed L. Now for a non-periodic function L tends to 

infinity. 

 

So, this above equation we investigate that what happens when L tends to infinity. So 

when L tends to infinity this would be  

𝑓(𝑥) = lim
𝐿→∞

𝑓𝐿(𝑥) 

(Refer Slide Time: 06:41) 
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So now 
1

𝐿
 then when L tends to infinity 

1

𝐿
 tends to 0. So, if you see the value of the first 

term here, that vanishes in the integral. So, this guy goes off. Further we have  

∆𝜔 =
𝜋

𝐿
 

which is also tends to 0. So, which indicate that w becomes continuous hence the 

summation here like n equals to 1 to infinity would be replaced by 0 to infinity. 

 

And then we get  

𝑓(𝑥) =
1

𝜋
∫ [cos 𝜔𝑥 ∫ 𝑓(𝑉)

∞

−∞

cos 𝜔𝑉 𝑑𝑉 + sin 𝜔𝑥 ∫ 𝑓(𝑉)
∞

−∞

sin 𝜔𝑉 𝑑𝑉]
∞

0

𝑑𝜔 

So that is what you guess which reduces that  

𝐴(𝜔) =
1

𝜋
∫ 𝑓(𝑉)

∞

−∞

cos 𝜔𝑉 𝑑𝑉 

𝐵(𝜔) =
1

𝜋
∫ 𝑓(𝑉)

∞

−∞

sin 𝜔𝑉 𝑑𝑉 

So, you can rewrite this  

𝑓(𝑥) =
1

𝜋
∫ [𝐴(𝜔) cos 𝜔𝑥 + 𝐵(𝜔) sin 𝜔𝑥]𝑑𝜔

∞

0

 

So, this is a representation of the Fourier integral. 

 

Now there is another theorem which is associated which is for the Fourier integral, 

Fourier integral is that if 𝑓(𝑥) is a piecewise continuous in every finite interval and has 

a right and left hand derivatives at every point and the integrals represented here is 

finite, then 𝑓(𝑥) can be represented by a Fourier integral given here. At any point 𝑓(𝑥) 

193



is discontinuous, the value of the Fourier integral would be average of the left hand 

right hand side derivative. Now this has also again application to ODEs and PDEs. 

(Refer Slide Time: 09:31) 

 

Now similarly one can look at like Fourier sin and cosines integrals like one can have 

Fourier sin cosine integrals these are quite a bit of standard textbook material. So let us 

say 𝑓(𝑥) is even then 𝐵(𝜔) is 0. So  

𝐴(𝜔) =
2

𝜋
∫ 𝑓(𝑉)

∞

0

cos 𝜔𝑉 𝑑𝑉 

 So,  

𝑓(𝑥) = ∫ [𝐴(𝜔) cos 𝜔𝑥]𝑑𝜔
∞

0

 

Similarly, 𝑓(𝑥) is odd function then this becomes 

𝑓(𝑥) = ∫ [𝐵(𝜔) sin 𝜔𝑥]𝑑𝜔
∞

0

 

Now similarly we can have complex integral, complex Fourier integral. 

 

Now 𝑓(𝑥) if it is having this standard these things, the standard function like this and 

Fourier integral not necessary even or odd, then we have all these 𝐴(𝜔), 𝐵(𝜔) in this 

fashion, okay. And now we can write these things and we can get the complex integral 

for the same. 

(Refer Slide Time: 11:16) 
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Now just going with the another one is the Fourier transformation, okay. Now the 

integral transformation is the form of integral that produces from eigenfunctions. Then 

the Fourier will also have Fourier cosine, so let us say 𝑓(𝑥) is even. Then the cosine 

integral we have already got like  

𝑓(𝑥) = ∫ [𝐴(𝜔) cos 𝜔𝑥]𝑑𝜔
∞

0

 

And 

𝐴(𝜔) =
2

𝜋
∫ 𝑓(𝑉)

∞

0

cos 𝜔𝑉 𝑑𝑉 

Now we now  

𝐴(𝜔) = √
2

𝜋
𝑓�̂�(𝜔) 

c indicates the cosine. 

 

Then changing the integration variable v to x, so you can write this guy  

𝑓�̂�(𝜔) = √
2

𝜋
∫ 𝑓(𝑥) cos 𝜔𝑥 𝑑𝑥

∞

0

 

And 

𝑓(𝑥) = √
2

𝜋
∫ 𝑓�̂�(𝜔) cos 𝜔𝑥 𝑑𝑥

∞

0

 

Now this guy is called the Fourier cosine transformation. So similarly, one can find the 

Fourier sine transformation also, okay. 
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Now some common terminology that let us say like for Fourier cosine transformation 

one could like this and Fourier sine transformation one could write like this. And these 

are the inverse transformation of these two values. So, we can now again there are series 

of Fourier sine and cosine transformation, which one can find in like standard textbook. 

(Refer Slide Time: 13:51) 

 

But we talked about some of the linearity like say let us say  

𝐹𝑐(𝑎𝑓 + 𝑏𝑔) = 𝑎𝐹𝑐(𝑓) + 𝑏𝐹𝑐(𝑔) 

Similarly,  

𝐹𝑠(𝑎𝑓 + 𝑏𝑔) = 𝑎𝐹𝑠(𝑓) + 𝑏𝐹𝑠(𝑔) 

So this is a linear property of, similarly we can do the derivative like let 𝑓(𝑥) is 

continuous and absolutely integrable on x axis and 𝑓′(𝑥) is piecewise continuous on a 

finite interval says that 𝑓(𝑥) tends to 0 as x tends to infinity. Then we can write  

𝐹𝑐[𝑓′(𝑥)] = 𝜔𝐹𝑠[𝑓(𝑥)] − √
2

𝜋
𝑓(0) 

 

Similarly, we can write that  

𝐹𝑠[𝑓′(𝑥)] = −𝜔𝐹𝑐[𝑓(𝑥)] 

Similarly  

𝐹𝑐[𝑓′′(𝑥)] = −𝜔2𝐹𝑐[𝑓(𝑥)] − √
2

𝜋
𝑓′(0) 
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And  

𝐹𝑠[𝑓′′(𝑥)] = −𝜔2𝐹𝑠[𝑓(𝑥)] − √
2

𝜋
𝜔𝑓(0) 

So, these are pretty much used. So, these derivatives and for solving ODE or PDE. 

(Refer Slide Time: 16:11) 

 

Now similarly, one can write this for the n-th derivative also. And now so you can 

extend this for n-th derivative and also write the complex Fourier transform. Now some 

of the other notation like we have already written  

𝐹𝑐[𝑓] = 𝑓 

So,  

𝑓 = 𝐹−1(𝑓) 

So now one interesting thing is that from the Parseval’s theorem Fourier transform, 

which refers to that  

∫ 𝑓(𝑥)2
∞

−∞

𝑑𝑥 = ∫ 𝑓(𝜔)2
∞

−∞

𝑑𝜔 

So, the left hand side represent the square of the 𝑓(𝑥), which represents fluctuations 

mathematically modeled by the physical system. So, these also represent the total 

energy of the fluctuation. And the right hand side this guy which can be interpreted as 

the total energy of the physical system. Hence the integral of this contributes to the 

frequencies of 𝜔 between A to B and so these are called the spectral representation, 

okay. 
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And there is another term which is called power spectral density or PSD. So, this let us 

say, so here the quantity of this left hand side minus so represents the this represents 

the total energy and this integrate will converge only when there is a transient signal. 

So, if x goes to 0 sufficiently at X large X. So, in the signal 𝑓(𝑥) for example is form 

of an acoustic sensor monitoring. 

 

So, one can say this 

𝑃 =
1

𝑋
 ∫ 𝑓(𝑥)2

𝑋

0

𝑑𝑥 

 And the Fourier transform can be defined as  

𝑓(𝜔) =
1

√𝑋
 ∫ 𝑓(𝑥)

𝑋

0

𝑒−𝑖𝜔𝑥𝑑𝑥 

Now using this guy, one can write 

𝑃 =
1

𝑋
 ∫ 𝑓(𝑥)2

𝑋

0

𝑑𝑥 =
1

𝑋
 ∫ 𝑓(𝜔)2

𝜔𝑚𝑎𝑥

0

𝑑𝜔 = ∫ (
𝑓(𝜔)

√𝑋
)

2𝜔𝑚𝑎𝑥

0

𝑑𝜔 

So, this guy is called the power spectral density which measures the power available in 

the signal from frequency 𝜔 to 𝜔 + ∆𝜔. 

 

So, between that so it measures this. So, this is an important measurement these things. 

So, one can have power spectral density or energy spectral density which are very useful 

in analyzing some of the physical system which shows that. 

(Refer Slide Time: 19:56) 
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Now similarly, your Fourier transform also shows the linearity like that. And also, it 

follows some of the derivative law which is  

𝐹(𝑎𝑓 + 𝑏𝑔) = 𝑎𝐹(𝑓) + 𝑏𝐹(𝑔) 

𝐹[𝑓′(𝑥)] = 𝑖𝜔𝐹[𝑓(𝑥)] 

𝐹[𝑓′′(𝑥)] = −𝜔2𝐹[𝑓(𝑥)] 

and so on. So, one can have t-th derivative like this  

𝐹[𝑓𝑝(𝑥)] = (𝑖𝜔)𝑝𝐹[𝑓(𝑥)] 

So, you can have this. Now the convolution theorem which says that  

ℎ(𝑥) = (𝑓 × 𝑔)(𝑥) = ∫ 𝑓(𝑝)𝑔(𝑥 − 𝑝)𝑑𝑝
∞

−∞

= ∫ 𝑓(𝑥 − 𝑝)𝑔(𝑝)𝑑𝑝
∞

−∞

 

So, which says that  

𝐹(𝑓 × 𝑔) = √2𝜋 𝐹(𝑓)𝐹(𝑔) 

So, this is what it says. So, these are the some of the important information which one 

can use for solving some of the physical system. 

(Refer Slide Time: 21:38) 

 

So, another thing is called the discrete Fourier transform. So, because in Fourier 

transform the function f has to be given over some interval. But in any most of the 

practical cases when the data comes from simulations or experience which represent 

the physical problem 𝑓(𝑥) is given only intervals of value of finite number or many 

points. So that time we do discrete Fourier transform. 

 

So, where what we let us say if we take n samples or snaps where the  
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𝑥𝑘 =
2𝜋𝑘

𝑁
 

So let us say 𝑓(𝑥) is sampled over these points. Then we can write  

𝑞(𝑥) = ∑ 𝑐𝑛𝑒𝑖𝑛𝑥𝑘

𝑛−1

𝑛=0

 

So, this interpolates 𝑞(𝑥𝑘)= 𝑓(𝑥𝑘). And the coefficient 

𝑐𝑛 =
1

𝑁
 ∑ 𝑓𝑘𝑒−𝑖𝑛𝑥𝑘

𝑛−1

𝑛=0

 

where 𝑓𝑘 = 𝑓(𝑥𝑘𝑛
), n=0, 1, . . . and then so on. 

 

So, the discrete Fourier transform is also helpful to analyze some of these practical 

systems. So, and then we can have first Fourier transform which is called FFT. So, 

where 𝑓 is the frequency spectrum of function or signal 𝑓(𝑥). So, the component 𝑓�̂� of 

𝑓 give a resolution of 2𝜋 periodic function. So, the Fourier matrix FN would be of size 

N × N. And the discrete Fourier transform would be order of n square. 

𝐷𝐹𝑇 = 𝑂(𝑁2) 

But this kind if we do FFT then we will have order of  

𝐷𝐹𝑇 = 𝑂(𝑁) log2 𝑁 

So, for the FFT has this much so we can see how DFT becomes so important. So, to in 

FFT one has to choose N is 

𝑁 = 2𝑃 

where P is an integer. So, one can see that why this DFT becomes important because of 

the large size of the system. 

(Refer Slide Time: 24:48) 
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Now that what I would like to touch up on Fourier and quickly, we will go to Laplace 

transform. What we will do is that, so this is a method is a powerful method for solving 

linear ordinary differential equation. So, and corresponding initial value problem. So, 

we can use Laplace transformation, is generally solve for the initial value problem. 

 

So let us say for a function of 𝑓(𝑠) the Laplace transform would be given as 

𝑓(𝑠) = 𝐿(𝑓) = ∫ 𝑒−𝑠𝑡𝑓(𝑡)𝑑𝑡
∞

0

 

We assume ft such that above integral exist. So, and where 𝑓(𝑡) would be Laplace of F 

inverse. So, we can see a simple let us say a function 𝑓(𝑡) equals to 1 for t greater than 

0. That means if I plot ft which is 1. Here is the t’s axis. 

 

Then  

𝑓(𝑠) = 𝐿(𝑓) = ∫ 𝑒−𝑠𝑡𝑓(𝑡)𝑑𝑡
∞

0

= [
𝑒−𝑠𝑡

−𝑠
]

0

∞

=
1

𝑠
 

So similarly, if we say  

𝑓(𝑡) = 𝑒𝑎𝑡 

then Laplace of that would become 

𝑓(𝑠) =
1

𝑠 − 𝑎
 

So now there are standard functions where one can actually find out this. 

(Refer Slide Time: 26:36) 
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Now similarly Laplace transformation also there is linearity or linearity exists like if 

we have  

𝐿[𝑎𝑓(𝑡) + 𝑏𝑔(𝑡)] = 𝑎𝐿[𝑓(𝑡)] + 𝑏𝐿[𝑔(𝑡)] 

 like that. So that linearity also exists. Then we can shift, shifting is there. 

(Refer Slide Time: 27:11) 

 

So, shifting also we can have let us say ft as an transformation phase then we can write  

𝐿[𝑒𝑎𝑡𝑓(𝑡)] = 𝑓(𝑠 − 𝑎) 

When you take the inverse of that so this would be  

𝑒𝑎𝑡𝑓(𝑡) = 𝐿−1[𝑓(𝑠 − 𝑎)] 

So, like this we will close the, now similarly the derivative also exists. So, like  

𝐿(𝑓′) = 𝑠𝐿(𝑓) − 𝑓(0) 

𝐿(𝑓′′) = 𝑠2𝐿(𝑓) − 𝑠𝑓(0) − 𝑓′(0) 
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and so on. 

 

So, because these are important to solve the initial value problem. Similarly, you can 

have integrals where you can say that  

𝐿 [∫ 𝑓(𝜏)𝑑𝜏
𝑡

0

] =
1

𝑠
 𝑓(𝑠) 

So,  

∫ 𝑓(𝜏)𝑑𝜏
𝑡

0

= 𝐿−1 [
1

𝑠
 𝑓(𝑠)] 

Now I am just giving you another idea about how to use this. 

(Refer Slide Time: 28:38) 

 

Now we can look at some of quick example of application to ODE, how one can use 

this Laplace transformation. For example, you have  

𝑦′′ + 𝑦′ + 𝑞𝑦 = 0 

for initial value let us say 𝑦(0) = 0.16, 𝑦′(0) = 0. So, if you take the Laplace 

transformation this will become 

𝑠2𝑦 − 𝑠𝑦(0) − 𝑦′(0) + 𝑠𝑦 − 𝑦(0) + 𝑞𝑦 = 0 

And if we do this using the values, we get  

𝑦 =
0.16(𝑠 + 1)

𝑠2 + 𝑠 + 9
 

So,  
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𝑦(𝑡) = 𝐿−1(𝑦) = 𝐿−1 [
0.16(𝑠 + 1) + 0.08

(𝑠 +
1
2)

2

+
35
4

] 

So, you can finally get the solution for this. Just to give you an idea how to have this 

kind of initial value problem and you can transform using the Laplace. 

(Refer Slide Time: 30:04) 

 

Now the advantage of this kind of Laplace method is that it is a non-homogeneous 

ODE, which does not require for solving the so homogeneous ODE. We can directly 

use this Laplace transformation of this. Now there is one could be, there are couple of 

function, one is the step function. You need step function which is called the Heaviside 

function. 

 

So, which is defined 𝑓 = 𝑢(𝑡 − 𝑎), which is defined as 

𝑢(𝑡 − 𝑎) = {
0 𝑖𝑓 𝑡 < 𝑎
1 𝑖𝑓 𝑡 > 𝑎

 

So, if we take the Laplace of this function so we will get essentially 

𝐿[𝑢(𝑡 − 𝑎)] =
𝑒−𝑎𝑠

𝑠
 

So typically, this function used in lot of engineering applications. And similarly, one 

more function is there which is called the direct delta function. So direct delta function 

is sort of a defined like  

𝑓𝑘(𝑡 − 𝑎) = {
1

𝐾
𝑖𝑓 𝑎 ≤ 𝑡 ≤ 𝑎 + 𝑘

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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So, if we, the integral of this function over an interval would give so typically we write 

that direct delta function is  

𝛿(𝑡 − 𝑎) = {
∞ 𝑖𝑓 𝑡 = 𝑎
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

So,  

∫ 𝛿(𝑡 − 𝑎)
∞

0

= 1 

∫ 𝑔(𝑡)𝛿(𝑡 − 𝑎)
∞

0

= 𝑔(𝑎) 

in general. 
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So, if we do the Laplace of delta function, so we get  

𝐿[𝛿(𝑡 − 𝑎)] = 𝑒−𝑎𝑠 

So, this is another important function and similarly we can look at the convolution. 

Convolution is the integral in solving also non-homogeneous linear ODEs where we 

say  

ℎ(𝑡) = (𝑓 ∗ 𝑔)(𝑡) = ∫ 𝑓(𝜏)𝑔(𝑡 − 𝜏)
∞

0

𝑑𝜏 

So, one can say  

𝑓 ∗ 𝑔 = 𝑔 ∗ 𝑓 

So, this is a commutative law. Secondly  

𝑓 ∗ (𝑔1 + 𝑔2) = 𝑓 ∗ 𝑔1 + 𝑓 ∗ 𝑔2 

So, this is distributive law. Then we can have 

(𝑓 ∗ 𝑔) ∗ 𝑉 = 𝑓 ∗ (𝑔 ∗ 𝑉) 
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so, this is associative law. And  

𝑓 ∗ 0 = 0 ∗ 𝑓 = 0 

One can have like  

𝑓 ∗ 1 ≠ 𝑓 

And the Laplace transform of  

𝐿[ℎ(𝑡)] = 𝐻(𝑠) = 𝐿[𝑓 ∗ 𝑔] = 𝐿[𝑓(𝑡)] + 𝐿[𝑔(𝑡)] = 𝐹(𝑠)𝐺(𝑠) 

So, these are different functions where one can do this Laplace transform and already 

we have seen that this Laplace transform is essentially quite handy when you are trying 

to solve these initial value problems. And especially when you have non-homogeneous 

equation it does not require that you transform or the split the equation into 

homogeneous part and then solve the non-homogeneous part straightaway. 

 

Or other you can consider the homogeneous equations and taking Laplace transform 

and try to solve it. So, this would be handy in solving this kind of ODEs and we see 

these applications more when you go to the numerical part. So, we will stop the 

discussion here and continue with the other things in the next session. 
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