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Okay, so let us continue the discussion on partial differential equation. We have started 

just discussing about the PDEs and we have looked at the classification and then in the 

last session, we have looked at the 1D wave equation. 
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So now we are going to look at the first order PDE. So essentially how to solve that 

first order PDEs. Now in so the characteristics curve of this kind of PDE would look 

like  

𝑎(𝑥, 𝑦, 𝑢)
𝜕𝑢

𝜕𝑥
+ 𝑏(𝑥, 𝑦, 𝑢)

𝜕𝑢

𝜕𝑦
= 𝑐(𝑥, 𝑦, 𝑢) 

So, this is the and here 𝑎, 𝑏 𝑎𝑛𝑑 𝑐 these are all 𝐶∞ function of three variable x, y, z, 

where x y lies in an open region. So, x, y belongs to R2 in which coefficient function 

𝑎, 𝑏 𝑎𝑛𝑑 𝑐 depend only on x, y. 

 

So let us say if this guy 𝑎, 𝑏, 𝑐 they become function of x and y which belongs to R then 

this particular ODE will bring down to 

𝑎(𝑥, 𝑦)
𝜕𝑢

𝜕𝑥
+ 𝑏(𝑥, 𝑦)

𝜕𝑢

𝜕𝑦
= 𝑐(𝑥, 𝑦) 
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for all x, y which belongs to R. So first we define the concept of characteristics curve 

for this PDE what we have written here and then the discussion would be similar to the 

second order equation. 

 

So let us say suppose we try to solve this PDE here and to an initial condition and they 

are given like  

𝑢(𝑥(𝑡), 𝑦(𝑡)) = 𝑓(𝑡) 

where t belongs to I. Now so f is a known smooth function defined on I interval. So 

here the idea is that the given information, we can use that information together with 

the PDE to obtain the values of the derivative like 𝑢𝑥 and 𝑢𝑦 on gamma. 

 

So now we have already defined these a, b, c functions, since we are assuming this a, 

b, c and the initial data f, these are all C infinity function. So, then what we can write 

that 

�̇�𝑢𝑥 + �̇�𝑢𝑦 = 𝑓̇ 

𝑎𝑢𝑥 + 𝑏𝑢𝑦 = 𝑐 

So, if you put it that into a matrix form, so  

(
�̇� �̇�
𝑎 𝑏

) (
𝑢𝑥

𝑢𝑦
) = (�̇�

𝑐
) 

 

So, the determinant of this matrix would be  

𝑏�̇� − 𝑎�̇� = 0 

to get the characteristics curve, for characteristics curve. Now so if you see this guy 

here, so these are ODEs here, which is equivalent to writing like  

𝑑𝑥

𝑑𝑡
= 𝑎(𝑥, 𝑦) 

and  

𝑑𝑦

𝑑𝑡
= 𝑏(𝑥, 𝑦) 

So, these are sort of a system of ODE that you can think about from here. 

 

The system ODE is defined the characteristics curve for the first order linear PDE. So, 

these are going to define the system. 

(Refer Slide Time: 05:20) 
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Now also we have the initial condition like 

(𝑥(𝑡0), 𝑦(𝑡0)) = (𝑥0, 𝑦0) 

So, the characteristics curve always can be found out from this. Now what we do? Let 

us say suppose we have computed the characteristics curve for this PDE that is given 

here and according to the system of this ODE system of ODEs which is represented by 

this set of curves. 

 

Now what we can do we can write down the chain rule and expand this like  

𝑑

𝑑𝑡
 [𝑢(𝑥, 𝑡), 𝑦(𝑥, 𝑡)] =  

𝜕𝑢

𝜕𝑥
∙

𝑑𝑥

𝑑𝑡
+

𝜕𝑢

𝜕𝑦
∙

𝑑𝑦

𝑑𝑡
  

So now what we get? So, using the definition of characteristics curve this we can write  

𝑑

𝑑𝑡
 [𝑢(𝑥, 𝑡), 𝑦(𝑥, 𝑡)] = 𝑎(𝑥, 𝑦)

𝜕𝑢

𝜕𝑥
+ 𝑏(𝑥, 𝑦)

𝜕𝑢

𝜕𝑦
= 𝑐(𝑥, 𝑦) 

along the characteristics curve. Now this suggests a way to construct a solution for the 

initial value problem. 

 

So, and this is known as method of characteristics curve, okay. So, this is how using 

method of characteristics you can solve. For example, let us say you want to solve an 

initial value problem where 

𝑎(𝑥, 𝑦)𝑢𝑥 + 𝑏(𝑥, 𝑦)𝑢𝑦 = 𝑐(𝑥, 𝑦) 

in R and 𝑢 = 𝑓. Then gamma Γ is a curve in R. That is not a characteristic curve. 
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The method of characteristic curve consists of first finding the characteristics curve of 

the PDE given here by solving the system of ODEs that we get here. So essentially, 

when you have a first order PDE with initial value problem, we can bring down to the 

system of ODEs and then that would form the characteristics curve. So, what we can 

see and quick let us say an example. 

(Refer Slide Time: 08:46) 

 

Let us say numerical example, we can find the general solution of  

𝑥
𝜕𝑢

𝜕𝑥
+ 𝑦

𝜕𝑢

𝜕𝑦
= 2𝑢 

for x and y which belongs to R2. So, the equations of characteristics curves are  

𝑑𝑥

𝑑𝑡
= 𝑥 

and  

𝑑𝑦

𝑑𝑡
= 𝑦 

So, using chain rule, what we obtain that  

𝑑𝑦

𝑑𝑥
=

𝑦

𝑥
 

for 𝑥 ≠ 0. So, this can be solved by separation of variables. So let us say  

𝑦 = ξ𝑥 

and where psi ξ is a real parameter. 

 

The characteristic curve for the PDE is a pencil of straight lines through the origin in 

R2. So, along the characteristics curve of the given PDE here you solve the ODE like  
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𝑑𝑢

𝑑𝑡
= 2𝑢 

So now we combine this ODE with the first order ODE given here. So, these two if we 

combine then what we get that  

𝑑𝑢

𝑑𝑥
=

2𝑢

𝑥
 

for 𝑥 ≠ 0. So now this one if we solve, we get  

𝑢 = 𝐹(ξ)𝑥2 

So, F is an arbitrary function or arbitrary 𝐶1 function and ξ is already given. So, solving 

for ξ if we solve for ξ from here and substitute here what we will,  

𝑢(𝑥, 𝑦) = 𝐹 (
𝑦

𝑥
) 𝑥2 

for 𝑥 ≠ 0. So, this is the general solution of this particular PDE. 

(Refer Slide Time: 11:18) 

 

Now we move to the, we can use using symmetry to solve PDEs. So partial differential 

equation is said to be invariant under a group of transformation and it form does not 

change after changing variables according to the transformation in the group. So, we 

will look at the first kind of example of radially symmetric solution to Laplace equation. 

 

So, suppose that u is an C2 function C2 solution to Laplace equation of  

𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 0 

in R2. So, we consider that what happens to this particular equation when we change a 

new variable to ξ and η. So, like given by one parametric group of rotation the matrix 

is given  
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𝑀ϕ = (
cos ϕ − sin ϕ
sin ϕ cos ϕ

) 

So, this is a sort of a rotation matrix. So, the rotations are counterclockwise by angle ϕ. 

 

So, what we set  

(
𝜉
𝜂

) = 𝑀ϕ (
𝑥
𝑦) 

where we get  

𝜉 = 𝑥 cos ϕ − 𝑦 sin ϕ 

𝜂 =  𝑥 sin ϕ + 𝑦 cos ϕ 

So now this particular equation, this can be now solved for x and y in terms of 𝜉 and 𝜂 

by inverting the matrix or we can write  

𝑀ϕ
−1 = 𝑀−ϕ = (

cos ϕ sin ϕ
− sin ϕ cos ϕ

) 

So that what we get  

𝑥 = 𝜉 cos ϕ + 𝜂 sin ϕ 

𝑦 = −𝜉 sin ϕ + 𝜂 cos ϕ 

Now we think of u as a function of 𝜉 and 𝜂 by looking at this and which we will denote 

by let us say,  

𝑣(𝜉, 𝜂) = 𝑢(𝑥, 𝑦) 

Now we can apply chain rule. So, what we get  

𝑢𝑥 = 𝑣𝜉  
𝜕𝜉

𝜕𝑥
+ 𝑣𝜂  

𝜕𝜂

𝜕𝑥
 

And  

𝜕𝜉

𝜕𝑥
= cos ϕ 

𝜕𝜂

𝜕𝑥
= sin ϕ 

So, what we get  

𝑢𝑥 = cos ϕ 𝑣𝜉  +  sin ϕ 𝑣𝜂 

(Refer Slide Time: 14:49) 
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So similarly, we can calculate and we get  

𝑢𝑥 = − sin ϕ 𝑣𝜉 +  cos ϕ 𝑣𝜂   

So now we differentiate both side of this equation and what we get  

𝑢𝑥𝑥 = cos ϕ [𝑣𝜉𝜉  
𝜕𝜉

𝜕𝑥
+ 𝑣𝜉𝜂  

𝜕𝜂

𝜕𝑥
] + sin ϕ [𝑣𝜂𝜉  

𝜕𝜉

𝜕𝑥
+ 𝑣𝜂𝜂  

𝜕𝜂

𝜕𝑥
] 

So, this will get us. So also, the mix second partial derivatives are C2 functions. 

 

So, this will give us  

𝑢𝑥𝑥 = cos2 ϕ 𝑣𝜉𝜉 + 2 sin ϕ cos ϕ 𝑣𝜉𝜂 + sin2 ϕ 𝑣𝜂𝜂 

Now similarly we can take the partial derivative of this guy. And what do we get, 

𝑢𝑦𝑦 = sin2 ϕ 𝑣𝜉𝜉 − 2 sin ϕ cos ϕ 𝑣𝜉𝜂 + cos2 ϕ 𝑣𝜂𝜂 

Now if we add these two guys together so what we get  

𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 𝑣𝜉𝜉 + 𝑣𝜂𝜂 

So hence if you solve the Laplace equations here the original Laplace equation  

𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 0 

then  

𝑣𝜉𝜉 + 𝑣𝜂𝜂 = 0 

which has the same form same form as Laplace equation. And is invariant under 

rotation, okay. 

 

So, this suggests that we look for solution of the original Laplace equation  

𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 0 
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that functions of a combination of the independent variable that is independent of the 

rotation parameter p. So, to obtain such combination we can write like  

𝜉2 + 𝜂2 = 𝑥2 + 𝑦2 

So, the rotation parameter that is they are rotationally invariant. So, we therefore look 

for a solution of the Laplace equation in a form like  

𝑢(𝑥, 𝑦) = 𝑓 (√𝑥2 + 𝑦2) 

for x and y belongs to R2 where f is a C2 function of a single variable. And this particular 

solution is radially, so this is radially symmetric, okay. 

(Refer Slide Time: 18:59) 

 

So now we can look at a quick example of that. Like let us say we have a problem, 

Dirichlet problem on annulus. So, we have some positive numbers 𝑟1 𝑎𝑛𝑑 𝑟2 where 

𝑟1  < 𝑟2. So, we define R which is x and y belongs to R2 where 𝑟1  < √𝑥2 + 𝑦2  < 𝑟2. 

So, if 𝐶𝑟 is the radius of the circle, the center at the origin. So, 𝐶𝑟 is the circle of radius 

r. 

 

Then we want to solve this boundary value problem of  

𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 0 

in R where 𝑢 = 𝑎 on 𝐶𝑟1
, 𝑢 = 𝑏 on 𝐶𝑟2

C r 2;  𝑎, 𝑏 are real constant. So how we go about 

it? We can have a solution in this form 

𝑢(𝑥, 𝑦) = 𝐶1 ln √𝑥2 + 𝑦2 + 𝐶2 

for x, y belongs to R. So, 𝐶1 and 𝐶2 some constant. So, the boundary conditions imply 

that  
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𝐶1 ln 𝑟1 + 𝐶2 = 𝑎 

𝐶1 ln 𝑟2 + 𝐶2 = 𝑏 

So, solving this what we get;  

𝐶1 =
𝑏 − 𝑎

ln
𝑟2

𝑟1

 

𝐶1 =
𝑎 ln 𝑟2 − 𝑏 ln 𝑟1

ln
𝑟2

𝑟1

 

So, once we substitute these values so our solution would be in the form of  

𝑢(𝑥, 𝑦) =
𝑏 − 𝑎

ln
𝑟2

𝑟1

ln √𝑥2 + 𝑦2 +
𝑎 ln 𝑟2 − 𝑏 ln 𝑟1

ln
𝑟2

𝑟1

 

where x and y belongs to R. So, this is the solution for the problem given here, the 

boundary value problem, okay. 

(Refer Slide Time: 21:40) 

 

So now look at the second like the dilation invariant solution, dilation invariant solution 

to Laplace equation. So, like so you can define the so you can see the change of variable 

like  

(
𝜉
𝜂

) = (
𝛼 0
0 𝛽

) (
𝑥
𝑦) 

So, for nonzero coefficients of 𝛼, 𝛽 which are nonzero the two dimensional Laplace 

equation is given as  

𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 0 

in R2. So, the change of variable where, 
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𝜉 = 𝛼𝑥 

𝜂 =  𝛽𝑦 

So,  

𝑥 =
𝜉

𝛼
 

𝑦 =
𝜂

𝛽
 

So, we set  

𝑣(𝜉, 𝜂) = 𝑢(𝑥, 𝑦) 

So then again, we can write like we can take the derivative and we can write that 

𝑢𝑥 = 𝛼𝑣𝜉 

𝑢𝑦 = 𝛽𝑣𝜂 

and  

𝑢𝑥𝑥 = 𝛼2𝑣𝜉𝜉  

𝑢𝑦𝑦 = 𝛽2𝑣𝜂𝜂 

So,  

𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 𝛼2𝑣𝜉𝜉 + 𝛽2𝑣𝜂𝜂 = 0 

If you solve the Laplace equation this then we also solve this. So now that also is in R2 

and invariant under the scaling transformation provided 𝛼2 = 𝛽2 with therefore set 𝛼 =

𝛽 = λ. So, 

(
𝜉
𝜂

) = 𝐷λ (
𝑥
𝑦) 

And  

𝐷λ = (
λ 0
0 λ

) 

So, what we get that  

𝜉 = λ𝑥 

𝜂 =  λ𝑦 

(Refer Slide Time: 24:07) 
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If a combination of this variable is independent of the dilation parameter lambda, this 

is a dilation parameter lambda, then we get  

𝜂

𝜉
=

𝑦

𝑥
 

for 𝑥 ≠ 0. So, this suggests that we look for a solution to the Laplace equation in R2 of 

the form  

𝑢(𝑥, 𝑦) = 𝑓 (
𝑦

𝑥
) 

for 𝑥 ≠ 0. So let us set  

𝑠 =
𝑦

𝑥
 

for 𝑥 ≠ 0. So, we get  

𝑢(𝑥, 𝑦) = 𝑓(𝑠) 

and where s is given like 
𝑦

𝑥
. 

 

Now we look for the solution to the Laplace equation in terms of this  

𝑢(𝑥, 𝑦) = 𝑓(𝑠) 

So, what we get  

𝑢𝑥 = 𝑓′(𝑠) 
𝜕𝑠

𝜕𝑥
 

which would be  

𝑢𝑥 = 𝑓′(𝑠) 
𝜕𝑠

𝜕𝑥
= −

1

𝑥
 𝑠 𝑓′(𝑠) 

Similarly, we can get  
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𝑢𝑥𝑥 =
2𝑠

𝑥2
  𝑓′(𝑠) +

𝑠2

𝑥2
  𝑓′′(𝑠) 

for 𝑥 ≠ 0. Now similarly we get for  

𝑢𝑦 =
1

𝑥
  𝑓′(𝑠) 

and  

𝑢𝑦𝑦 =
1

𝑥2
  𝑓′′(𝑠) 

So, this would give us  

2𝑠

𝑥2
  𝑓′(𝑠) +

1 + 𝑠2

𝑥2
  𝑓′′(𝑠) = 0 

Now if you solve the Laplace equation, this equals to 0 in R2, then f also follows this 

equation and this should be then 0. So, which one can write  

 (1 + 𝑠2)𝑓′′(𝑠) + 2𝑠 𝑓′(𝑠) = 0 

So, this is an ODE, second order ODE and we can solve this by setting that  

𝑣(𝑠) = 𝑓′(𝑠) 

(Refer Slide Time: 26:34) 

 

So, we get  

(1 + 𝑠2)
𝑑𝑣

𝑑𝑠
 + 2𝑠 𝑣 = 0 

So, which gives us a solution  

ln|𝑣| = ln (
1

1 + 𝑠2
) + 𝐶0 

So that is a constant. So, our  
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𝑣(𝑠) =
𝐶1

1 + 𝑠2
 

for s belongs to R. So,  

𝑓′(𝑠)  =
𝐶1

1 + 𝑠2
 

So, we can integrate this to get a solution for  

𝑓(𝑠) = 𝐶1 tan−1(𝑠) + 𝐶2 

Now all these things if we couple then the solution of the Laplace equation would be  

𝑢(𝑥, 𝑦) = 𝐶1 tan−1(𝑠) + 𝐶2 

for 𝑥 ≠ 0. So, 𝐶1 and 𝐶2 are constant. So, this is this shows that the dilation invariant 

harmonic function in R2 is linear function of angle theta. The point x and y mix with 

the positive axis so which is essentially like 

𝑢 = 𝐶1𝜃 + 𝐶2 

 This is what you can see. Now similarly, one can find out the dilation invariant 

solution. 

(Refer Slide Time: 28:09) 

 

Dilation invariant solution of diffusion equation. So, the diffusion equation is given by  

𝜕𝑢

𝜕𝑡
= 𝐷 

𝜕2𝑢

𝜕𝑥2
 

 for x belongs to R, t greater than 0 where D is also greater than zero which is a diffusive 

coefficient. So now we can find the conditions for parameter 𝛼 𝑎𝑛𝑑 𝛽 such that 

𝜉 = 𝛼𝑥 

and we can say  

𝜏 = 𝛽𝑡 
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and alpha beta not equals to 0. 

 

So, what we can write that  

𝑣(𝜉, 𝜏) = 𝑢(𝑥, 𝑡) 

So,  

𝑥 =
𝜉

𝛼
 

and  

𝑡 =
𝜏

𝛽
 

So, what we can get that we can take the derivative and we get 

𝑢𝑥 =  𝛼𝑣𝜉 

 and  

𝑢𝑡 =  𝛽𝑣𝜏 

And 

𝑢𝑥𝑥 =  𝛼2𝑣𝜉𝜉  

And so, what we can write  

𝑢𝑡 − 𝐷𝑢𝑥𝑥 =  𝛽𝑣𝜏 − 𝐷𝛼2𝑣𝜉𝜉 

So, if u solves this diffusion equation, then we solve this equation, so this would be 0. 

So here so this diffusion equation given here or this one invariant under the change of 

variable provided. So, this is invariant under the change of variable provided 𝛽 = 𝛼2. 

So now what we have that following this we have  

𝜉 = 𝛼𝑥 

𝜏 = 𝛼2𝑡 

So that means  

𝜉

√𝜏
=

𝑥

√𝑡
 

for 𝜏 greater than 0 and t greater than 0. 

(Refer Slide Time: 30:41) 
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So, in order to find the dilation invariant solution of this one diffusion equation, our 

solution we look for a solution would be  

𝑢(𝑥, 𝑡) = 𝑓 (
𝑥

√𝑡
) 

where t greater than 0 and f is a C2 function of single variable, so  

𝑠 =
𝑥

√𝑡
 

for t greater than 0. So,  

𝑢(𝑥, 𝑡) = 𝑓(𝑠) 

Now what we can take derivative like previously we have done on both sides. We get  

𝑢𝑥 = 𝑓′(𝑠)
𝜕𝑠

𝜕𝑥
=

1

√𝑡
𝑓′(𝑠) 

for t greater than 0. And  

𝑢𝑥𝑥 =
1

𝑡
𝑓′′(𝑠) 

And so, and  

𝑢𝑡 = 𝑓′(𝑠)
𝜕𝑠

𝜕𝑡
 

Where, 

𝜕𝑠

𝜕𝑡
= −

𝑠

2𝑡
 

where t greater than 0. So, this would become  

𝑢𝑡 = −
𝑠

2𝑡
𝑓′(𝑠) 

So now if we put back everything together then we get 
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−
𝑠

2𝑡
𝑓′(𝑠) =

𝐷

𝑡
𝑓′′(𝑠) 

for all t greater than 0. So, this will bring down to a second order again ODE like this. 
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And when we do the solution of this system, so finally we get  

ln|𝑣| = −
𝑠2

4𝐷
+ 𝐶0 

𝐶0 is constant. Now exponentiate both sides, what we get is that 

𝑣(𝑠) = 𝐶1𝑒−
𝑠2

4𝐷 

for s belongs to R and  

𝑓′(𝑠) = 𝐶1𝑒−
𝑠2

4𝐷 

So, our  

𝑓(𝑠) = 𝐶1 ∫ 𝑒−
𝑠2

4𝐷

𝑠

0

𝑑𝑧 + 𝐶2 

for s belongs to R.  So, where 𝐶1, 𝐶2 are constant. 

 

Now so final solution if we put everything together back this would be 

𝑢(𝑥, 𝑦) = 𝐶1 ∫ 𝑒−
𝑠2

4𝐷

𝑥

√𝑡

0

𝑑𝑧 + 𝐶2 

for x belongs to R, t greater than 0. And 𝐶1 and 𝐶2 are constant. So, this is what you get 

as a dilation invariant solution. So, we stop the discussion here and continue to look at 

the other things in the next session. 
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