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Okay, so now we will continue the discussion on the PDE. Now what we are going to 

look at now how to apply that kind of theory like separation of variable or then the 

theoretical discussion on these things that we have done so far. 

(Refer Slide Time: 00:33) 

 

So let us look at those things. And but before we again refresh the, just to give an, 

whenever we solve this PDEs we require some sort of a boundary conditions. And these 

are along so that is one important aspect plus the domain of PDE. 

 

So, these are the two things that one must have it to get a solution of a PDE, because 

this will give you an idea about what is the domain where it is defined, and what are the 

boundary conditions that you have. So, first kind of boundary condition that is 

important is that called the Dirichlet boundary condition okay. So that means which 

assume that value of function given at point. 

 

And the second would be Neumann boundary condition, which is the gradient of the 

function, gradient of function is given in domain. So, it so third would be mixed 

boundary condition. Mixed boundary condition or sometime it is called Robin 

condition. So which means is that you will have both the Dirichlet condition. 
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So, it is just like when we see this example, then you can see that how these Dirichlet 

conditions are defined, and then the mixed condition would have both the fixed values 

and the gradient. And just to solution pattern, we have already talked about the 

superposition, which is that if 𝑢1 and 𝑢2 are solution of a linear homogeneous PDE, 

then let us say 𝑢1 and 𝑢2 are solution, then any combination of 𝑐1𝑢1 + 𝑐2𝑢2 this also 

going to be solution. 

 

And obviously, the other thing is that when you have a homogeneous solution, then that 

solution is going to be solution of the non-homogeneous equation. Now we have 

already also seen the systems which are parabolic, elliptic or hyperbolic in nature. Now 

we will see some let us see example of diffusion equation, which is given as  

𝑢𝑡 = 𝛼2𝑢𝑥𝑥 

So, this is obviously the domain, okay. So, when you define a PDE the domain is 

important and then obviously the boundary condition. So, the what are the boundary 

conditions here? That  

𝑢(0, 𝑡) = 0 

𝑢(𝐿, 𝑡) = 0 

for t greater than 0 to infinity. And 

𝑢(𝑥, 0) = 𝑓(𝑥) 

for 0 < 𝑥 < 𝐿. So now we see this is a so this sort of an initial value problem one can 

sees. 

 

This is an initial value problem where at the t=0 condition, the initial value of the 

function is given. And then the domain information or the boundary conditions given 

for other t at x=0 and so since this is a 1D diffusion equation, so in the one direction the 

boundary conditions are provided. Now one it is clear that this system is 1D and it is 

bounded between let us say if it is direction of x, the bound is x equals to 0 and x equal 

to L. 

 

So in between that only we are trying to find out the solution. And 𝑓(𝑥) is given as an 

initial condition. But another interesting thing one has to note that this initial condition 

is not defined at x=0 or x equal to L. This is given between x equal is greater than 0 and 
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x less than 0. So, this is not defined at these conditions. The reason is that at x=0 and 

x=L these are already defined. 

 

So, we do not want to have a system which is over defined. So that is important. So, we 

have this all initial conditions between this boundedness and these two points are the. 

Now this is one dimensional system but this will give you a very clear idea when you 

are dealing with multi-dimensional problem. So, at this corner points there is a chance 

of over defining the system. Or sometimes it is a corner point, sometimes it is an 

intersection of these things. 

(Refer Slide Time: 06:31) 

 

So, in a multi-dimensional problem for example if you take 2D example then this is 

again a corner point. Or if you take for example 3D, then this would be intersection 

surface. So that is another issue is there. So, in that time whenever you have this multi-

dimensional problem so this corner or intersection of surface, we have to choose one of 

which is defined. Now let us come back to this original problem of this 1D diffusion. 

 

So here we will use separation of variable. So let us say we define like  

𝑢(𝑥, 𝑡) = 𝑋(𝑥)𝑇(𝑡) 

So that is what we have defined. So, this is what we have already seen in the theoretical 

calculation. So, when you do that our  

𝑢𝑡 = 𝛼2𝑢𝑥𝑥 

So now if we put it back, this would be  

𝑋(𝑥)�̇�(𝑡) = 𝛼2𝑋′′(𝑥)𝑇(𝑡) 
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And all the boundary conditions correspond to this transformed system would become 

like for example  

𝑢(0, 𝑡) = 0 

This would go  

𝑋(0)𝑇(𝑡) = 0 

𝑢(𝐿, 𝑡) = 0 

that would get to 

𝑋(𝐿)𝑇(𝑡) = 0 

𝑋(0) = 𝑋(𝐿) = 0 

So now what we can write this guy is that  

𝑋′′(𝑥)

𝑋(𝑥)
=

1

𝛼2

�̇�(𝑡)

𝑇(𝑡)
= λ 

So, this then it will separate to 2 ODEs, which is  

𝑋′′(𝑥)

𝑋(𝑥)
= λ 

And  

1

𝛼2

�̇�(𝑡)

𝑇(𝑡)
= λ 

Now this boundary value problem becomes minus 

𝑋′′ − λ𝑋 = 0 

where we have 𝑋(0) = 𝑋(𝐿) = 0. So now the PDE is due to the separation of variable. 

Now we come down to the ODEs and these are boundary value problem. 

 

So, this is a second order linear ODE with the eigenvalue problem. So, this will have 

some non-trivial solution for  

−λ = (
𝑛𝜋

𝐿
)

2

 

Now what we get the solution for this is  

𝑋𝑛(𝑥) = sin (
𝑛𝜋𝑥

𝐿
) 

So that is from the first part of the system. Now the second part which we have is the 

1

𝛼2

�̇�(𝑡)

𝑇(𝑡)
= λ = − (

𝑛𝜋

𝐿
)

2
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Now what we can write that  

�̇�

𝑇
= −

𝑛2𝜋2𝛼2

𝐿2
 

So, the after doing the integration this will get like 

𝑇𝑛(𝑡) = 𝐵𝑛𝑒
−

𝑛2𝜋2𝛼2

𝐿2  

where 𝐵𝑛 is constant. 

(Refer Slide Time: 11:39) 

 

Now if we combine this and this the general solution would look like  

𝑢(𝑥, 𝑡) = 𝑋(𝑥)𝑇(𝑡) = 𝐵𝑛 sin (
𝑛𝜋𝑥

𝐿
) 𝑒

−
𝑛2𝜋2𝛼2

𝐿2  

and general solution would be  

∑ 𝐵𝑛 sin (
𝑛𝜋𝑥

𝐿
) 𝑒

−
𝑛2𝜋2𝛼2

𝐿2

∞

𝑛=1

 

for n is equals to 1 to infinity. 

 

Now we have got now this like initial condition  

𝑢(𝑥, 0) = 𝑓(𝑥) 

for 0 < 𝑥 < 𝐿. So what we get  

𝑓(𝑥) = 𝑢(𝑥, 0) = ∑ 𝐵𝑛 sin (
𝑛𝜋𝑥

𝐿
)

∞

𝑛=1
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So, and from here 𝐵𝑛 would be, so you can find out, 𝐵𝑛 can be found for given 𝑓(𝑥). 

And the final solution can be found out. 

 

So, this is where 𝑓(𝑥) we kept it beta generic so that any given 𝑓(𝑥) one can find out 

the 𝐵𝑛 from here and the final solution. Now the same 1D problem if we have a different 

boundary condition. Let us say the boundary conditions are different, equation is same 

like we have the same 

𝑢𝑡 = 𝛼2𝑢𝑥𝑥 

and define 0 < 𝑥 < 𝐿 𝑎𝑛𝑑 0 < 𝑡 < ∞. Here the boundary condition is given  

𝑢(0, 𝑡) = 𝐴 𝑎𝑛𝑑 𝑢(𝐿, 𝑡) = 𝐵 

This is for any t. So these are the Dirichlet conditions where the x=0 and x=L at these 

two points things are defined and 𝑢(𝑥, 0) = 𝑓(𝑥). Now if you compare with the 

previous boundary conditions where we have given this is 0. Now we are moving to a 

situation where they are given A and B. These are more generic. So, A and B if they 

are 0 then it comes down to the system that we have already looked at. 

(Refer Slide Time: 15:15) 

 

Now same way we can do the transformation like 𝑢(𝑥, 𝑡) would be the separation of 

variable. Then 

𝑢(𝑥, 𝑡) = 𝑋(𝑥)𝑇(𝑡) 

𝑋(0)𝑇(𝑡) = 𝐴, 𝑋(𝐿)𝑇(𝑡) = 𝐵. So, the let us say the function is transformed to  

𝑔(𝑥, 𝑡) = 𝑢(𝑥, 𝑡) − (𝐴 +
𝐵 − 𝐴

𝐿
𝑥) 

And where 𝑔𝑡 = 𝑢𝑡, 𝑔𝑥𝑥 = 𝑢𝑥𝑥. So, our equation system becomes  
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𝑔𝑡 = 𝛼2𝑔𝑥𝑥 

And then for this set of equation what we have like the boundary conditions which are 

going to have  

𝑔(0, 𝑡) = 0 

𝑔(𝐿, 𝑡) = 0 

And 

𝑔(𝑥, 0) = 𝑢(𝑥, 0) − (𝐴 +
𝐵 − 𝐴

𝐿
𝑥) = 𝑓(𝑥) − 𝐴 −

𝐵 − 𝐴

𝐿
𝑥 

So, these are two boundary conditions. This is initial conditions on everything gets 

transformed to this g. 

 

Now once this happens, so this portion of the system which has been defined this is 

exactly to or similar to the previous problem with zero boundary conditions. So now 

what it gives you an idea that this A and B is more generic and if A and B is 0, then that 

becomes a special case or alternatively what one can do, transform this system. 

(Refer Slide Time: 18:05) 

 

So let us look at some examples like 𝑢𝑡 = 𝑢𝑥𝑥. The domain is defined between, so these 

are some numerical values here; t is infinity to 0 and the boundary conditions are given 

like  

𝑢(0, 𝑡) − 2𝑢𝑥(0, 𝑡) = 5 

So, this is at x equals to 0. And this particular condition is known as mixed boundary 

condition where you have the both Dirichlet and the derivative. 
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Now at  

𝑢(1, 𝑡) = 35 

and these are for t less than infinity greater than 0. And plus, we are given the initial 

condition is  

𝑢(𝑥, 0) = 𝑓(𝑥) 

for x between 0 to 1. So, as I said this is a mixed boundary condition. So let us say we 

defined  

𝑔(𝑥) = 𝐴𝑥 + 𝐵 

and 𝑔(1) = 35, 𝑔(0) − 2𝑔′(0) = 5, which gets us A equals to 10 and B equals to 25. 

So, we set let us say  

𝑣(𝑥, 𝑡) = 𝑢(𝑥, 𝑡) − 10𝑥 − 25 

So,  

𝑢𝑡 = 𝑣𝑡 

And  

𝑢𝑥𝑥 = 𝑣𝑥𝑥 

And the conditions would be  

𝑣(0, 𝑡) − 2𝑣𝑥(0, 𝑡) = 0 

𝑣(1, 𝑡) = 0 

𝑣(𝑥, 0) = 𝑓(𝑥) − 10𝑥 − 25 

So, these are all boundary condition plus initial conditions for which it has to be solved. 

Now how do we do that? Now it is straightforward. We can see that  

𝑣(𝑥, 𝑡) = 𝑋(𝑥)𝑇(𝑡) 

So, the equation becomes  

𝑋′′

𝑋
=

�̇�

𝑇
= λ 

So, 

𝑋(0)𝑇(𝑡) − 2𝑋′(0)𝑇(𝑡) = 0 

𝑋(0) − 2𝑋′(0) = 0 

𝑋(1) = 0 

(Refer Slide Time: 21:18) 
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So, you got two ODEs. One is  

𝑋′′ − λ𝑋 = 0 

with boundary conditions 𝑋(0) − 2𝑋′(0) = 0 and 𝑋(1) = 0. So, we get if 𝜆 > 0, we 

get this one as  

𝑋(𝑥) = 𝐶1𝑒√𝜆𝑥 + 𝐶2𝑒−√𝜆𝑥 

Now if we using the boundary conditions what we get 𝐶1 = 𝐶2, they would be 0 which 

is not possible. 

 

Or if 𝜆 = 0 then  

𝑋(𝑥) = 𝐶1 + 𝐶2𝑥 

where 𝐶1 = 𝐶2 = 0, that is also not possible. So, we can see what are the values of 

lambda or if lambda less than 0 then if we get now 

𝑋(𝑥) = 𝐶1 cos(√−𝜆𝑥) + 𝐶2 sin(√−𝜆𝑥) 

So, the boundary condition if we put  

𝐶1 − 2√−𝜆𝐶2 = 0 

Where,  

𝐶1 = 2√−𝜆𝐶2 

So,  

𝐶1 cos(√−𝜆) + 𝐶2 sin(√−𝜆) = 0 

where  

𝐶1[2√−𝜆 cos(√−𝜆) + sin(√−𝜆)] = 0 

So, what we need here is that  
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2√−𝜆 cos(√−𝜆) + sin(√−𝜆) = 0 

So, which is  

tan √−𝜆 = −2√−𝜆 

So that means,  

𝜆1 = −3.37 

something like that. 

(Refer Slide Time: 23:56) 

 

So now let us look at a 2D system where you have  

∆2𝑢 = 0 

which is corresponding to an equation  

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
= 0 

which is also defined on a plane x and y and these are the plane A and B. And where 

this is within the domain, x is 0 to a and y is 0 to b. And the boundary conditions are x 

0 is 0. So, this is origin.  

 

And x, b, which is also 𝑓(𝑥), so this is 𝑓(𝑥). 

𝑢(𝑥, 0) = 0 

That means this guy is 0. And 

𝑢(𝑎, 𝑦) = 0 

So, this is also 0. So, these are the conditions. So let us say this is boundary condition 

i, this could be ii, this could be iii, this could be iv, and we will use that. And the other 

condition then we can write the solution as  
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𝑢(𝑥, 𝑦) = 𝐹(𝑥)𝐺(𝑦) 

And the equation becomes  

𝐹′′

𝐹
= −

𝐺′′

𝐺
= 𝐾 

Now there would be different cases. For example, let us start with the case I where K 

is 0. So, the solution for the first ODE would be 

𝐹 = 𝐴𝑥 + 𝐵 

And the second one would be  

𝐺 = 𝐶𝑦 + 𝐷 

Now we apply the boundary condition. So, 

𝑢(𝑥, 0) = 𝐹(𝑥)𝐺(0) = (𝐴𝑥 + 𝐵)(𝐷) = 0 

So, which means if this guy is not 0, D is 0. Now the second condition  

𝑢(0, 𝑦) = 𝐹(0)𝐺(𝑦) = (𝐵)(𝐶𝑦 + 𝐷) = 0 

Now D is already 0, so this gives us B is 0. Now we can have 𝐶 = 0. If it is 𝐶 = 0, then 

G is 0 and u is 0. Or we can have B is 0, okay, because C cannot be 0, then G would be 

0 and then u would be 0. So, you can have B is 0. 

(Refer Slide Time: 27:22) 

 

Now if we apply the boundary condition iv, what we get  

𝐴𝑥𝐶𝑦 = 0 

So now A would be 0. So, u would be 0. So, this is not possible or the C is 0, okay. So, 

this is how we can do the coefficient. Now this case K is positive. Let us say 𝐾 = 𝜇2, 

which is real. Then our system becomes  

𝐹′′ − 𝜇2𝐹 = 0 
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and  

𝐺′′ + 𝜇2𝐺 = 0 

So, this gives us a solution  

𝐹 = 𝐴𝑒𝜇𝑥 + 𝐵𝑒−𝜇𝑥 

Here  

𝐺 = 𝐶 cos 𝜇𝑦 + 𝐷 sin 𝜇𝑦  

Now we use boundary condition ii, sorry i. Then you get C is 0. If we use boundary 

condition iii, D would be 0, which means G is 0, which means u is 0. Or what we can 

have A + B = 0, which means A = -B and D should be not equals to 0. 

 

Now we use boundary condition iv, which is 𝑢(0, 𝑦) = 0. That gives us A equals to 0, 

B equals to 0 and D not 0. So, which means u = 0. 
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So, this is second case or case iii, the possibility is that K is less than 0 and let us say it 

is  

𝐾 = −𝜇2 

Then our system becomes  

𝐹′′ + 𝜇2𝐹 = 0 

𝐺′′ − 𝜇2𝐺 = 0 

So, this case the solution would be  

𝐹 = 𝐴 cos 𝜇𝑥 + 𝐵 sin 𝜇𝑥 

This case  

𝐺 = 𝐶𝑒𝜇𝑦 + 𝐷𝑒−𝜇𝑦 
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okay. So now what we get now boundary condition i we get 𝐶 = −𝐷. 

 

If we use boundary condition ii, A would be 0. Boundary condition iii which gives 

𝜇𝑎 = 𝑛𝜋 

where n equals to 1, 2, 3. So  

𝜇𝑛 =
𝑛𝜋

𝑎
 

So, our  

𝐹𝑛 = 𝐵𝑛 sin (
𝑛𝜋𝑥

𝑎
) 

 and  

𝐺𝑛 = 𝐶𝑛(𝑒𝜇𝑛𝑦 − 𝑒−𝜇𝑛𝑦) 

So, this is what you get. So, our  

𝑢𝑛 = 𝐵𝑛 sin (
𝑛𝜋𝑥

𝑎
) 𝐶𝑛2 sinh 𝜇𝑛𝑦 

𝑢𝑛 = 𝐷𝑛 sin (
𝑛𝜋𝑥

𝑎
) sinh (

𝑛𝜋𝑦

𝑎
) 
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So, if you write the general solution for this, we have  

𝑢 = ∑ 𝐷𝑛 sin (
𝑛𝜋𝑥

𝑎
) sinh (

𝑛𝜋𝑦

𝑎
)

∞

𝑛=1

 

Now we are using boundary condition ii where  
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𝑢(𝑥, 𝑏) = ∑ [𝐷𝑛 sinh (
𝑛𝜋𝑏

𝑎
)]

∞

𝑛=1

sin (
𝑛𝜋𝑥

𝑎
) = 𝑓(𝑥) 

So, we can get this is how you can find out the 𝐷𝑛 from there. So, this is how one has 

to tackle this kind of problem and then find out this coefficient like C and D from this 

kind of given conditions. So that is pretty much give you an idea about the different 

kind of solution approach. 

 

But primarily you do separation of variable, then you get to the second order ODEs I 

mean separated ODEs where you can solve and find out for different boundary 

conditions. So that is pretty much we conclude the discussion on PDE. Now we will 

continue other discussion in the next session. 
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