
Computational Science in Engineering 

Prof. Ashoke De 

Department of Aerospace Engineering 

Indian Institute of Technology – Kanpur 

 

Lecture – 26 

Numerical Analysis 

 

So, let us continue the discussion on this error and other numerical methods. So, we have looked 

at how the round off error and all these, they arise now we will look at the truncation error. 

(Refer Slide Time: 00:25) 

 
And this will arrive when we approximate a function using Taylor series approximation. So, let us 

say you have a function you try to show this will appear in Taylor series approximation, let us see 

you have I mean simple way to look at that if you try to look at 𝑓(𝑥𝑖+1). Now what Taylor's 

theorem say that any function at 𝑓(𝑥), we can define  

𝑓(𝑥) = 𝑓(𝑎) + 𝑓′(𝑎)(𝑥 − 𝑎) +
𝑓′′(𝑎)

2!
(𝑥 − 𝑎)2 + ⋯ 

Now I mean after some point of time we can say this is the term which is called remainder and the 

remainder would be  

𝑅𝑛 = ∫
(𝑥 − 𝑡)𝑛

𝑛!
𝑓(𝑛+1)(𝑡)

𝑥

𝑎

𝑑𝑡 

So, wherever we stop it if we stop it here then this would be the remainder in the Taylor series 

approximation. Now one then this is for the Taylor series one actually expands the Taylor series. 

Now the thing which can happen is that this one way we have seen that 0th order approximation 
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would be like this. Now if we use the Taylor series this guy can be actually approximated in a 

different way which is let us say we take another term which is  

𝑓(𝑥𝑖+1) ≅ 𝑓(𝑥𝑖) 

So, we are considering one more Taylor series, so that we have this approximation that is one can 

write. Now that will go from 0th order to another order but still if you see here, so we are 

considering this particular term but from here we have already omitted out some of the term which 

could lead to the error. So, this is still if this one is 0th order, this is first order or one can write 

like that considering one more term which is going to be like  

𝑓(𝑥𝑖+1) ≅ 𝑓(𝑥𝑖) + 𝑓′(𝑥𝑖)(𝑥𝑖+1 − 𝑥𝑖) 

And  

𝑓(𝑥𝑖+1) ≅ 𝑓(𝑥𝑖) + 𝑓′(𝑥𝑖)(𝑥𝑖+1 − 𝑥𝑖) +
𝑓′′(𝑥𝑖)

2!
(𝑥𝑖+1 − 𝑥𝑖)2 

So, this is second order, so this is the way you can keep increasing the number of points and your 

order could be increased. And finally, one can consider multiple number of points. And finally let 

us say if I go like that. 

(Refer Slide Time: 03:37) 

 

Then I can still write the remainder like  

𝑅𝑛 =
𝑓(𝑛+1)(𝜉)

(𝑛 + 1)!
(𝑥𝑖+1 − 𝑥𝑖)𝑛+1 
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Now here n is the connect this is the remainder of the nth order approximation. For example, if 

you see when the first order approximation then we have omitted term from here. So, n would be 

2, second order approximation we have left out the term from the third order. So, this n defines the 

order of approximation that is there. 

 

Now if your step size is let us say ℎ =  𝑥𝑖+1 − 𝑥𝑖 then one can write 

𝑓(𝑥𝑖+1) ≅ 𝑓(𝑥𝑖) + 𝑓′(𝑥𝑖)ℎ +
𝑓′′(𝑥𝑖)

2!
ℎ2 +

𝑓′′′(𝑥𝑖)

2!
ℎ3 + ⋯ + 𝑅𝑛 

So, essentially the 𝑅𝑛, we can write like 

𝑅𝑛 =
𝑓(𝑛+1)(𝜉)

(𝑛 + 1)!
ℎ𝑛+1 

So, we can have that is in the based on the step size. Now whatever would be the term remaining 

in the remainder that will determine that what the order of approximation that we have taken. 

 

So, essentially if you look at this is order of ℎ𝑛+1. So that means anything you are leaving out from 

this approximation that would be the order of a truncation error and this is where the truncation 

error may appear if you are leaving out on from here or if you are leaving out term from here. So 

that would lead to the kind of error which may be the problematic in your numerical 

approximation. 

 

Now I mean one can see if you can just to extend this if you do the 0th order approximation which 

is 𝑓(𝑥𝑖+1) ≅ 𝑓(𝑥𝑖) then your order is so the remainder will be order of h and this would be that 

so, you have left out the term from here, so this would be the n is 0. So, that is what h is 1 so that 

means it is 0th order approximation so depending on the n you get the order. So, now if it is first 

order then n would be actually 1. So, you take up to this, so then accordingly your remainder would 

be the system. Now so these things are also important because one has to look at that. 

(Refer Slide Time: 06:57) 
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Now the other thing which would come is the numerical like the differentiation, so numerical 

differentiation, so which is like we are writing  

𝑓′(𝑥𝑖) =  
𝑓(𝑥𝑖+1) − 𝑓(𝑥𝑖)

𝑥𝑖+1 − 𝑥𝑖
+ 𝑂(𝑥𝑖+1 − 𝑥𝑖)  

So, this again comes from the Taylor series approximation if you see this, so this is the term we 

are trying to approximate. So, here we are writing because our h is 𝑥𝑖+1 − 𝑥𝑖 that step size 

 

So, this is essentially in writing effects in 

𝑓′(𝑥𝑖) =  
∆𝑓𝑖

ℎ
+ 𝑂ℎ  

So, this is called forward differencing approach and this approximation particularly this is this first 

order. So, now we can have also second order forward differencing or second order approximation. 

So, the thing was to be, now similarly one can have backward differencing. So, you can look at 

the backward differencing also like for example will define the Taylor series for 𝑓(𝑥𝑖−1). 

 

Which is kind of 

𝑓(𝑥𝑖−1) = 𝑓(𝑥𝑖) − 𝑓′(𝑥𝑖)ℎ +
𝑓′′(𝑥𝑖)

2!
ℎ2 + ⋯ 

So, in the backward differencing where do we write that this would be written as 

𝑓′(𝑥𝑖) =  
𝑓(𝑥𝑖) − 𝑓(𝑥𝑖−1)

𝑥𝑖 − 𝑥𝑖−1
=  

∇𝑓𝑖

ℎ
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so this is called the first order backward differencing approach which is like you can see this one 

even in the graphically like if you have a 𝑓(𝑥) and this is x and this is how the function going on. 

 

And this is the tangent that is a true derivative. Then from here the approximation going here, so 

this is the approximation. Now this case one can see this is the function you have the function in 

like this. So, this is the true derivative and from here this is for the approximation. So, this goes in 

a backward fashion. So, the important point to note here is that whether it is a forward or backward 

everything actually comes from the Taylor’s series expression. 

(Refer Slide Time: 10:41) 

 

Now another thing which one can note that see we are talking about this error, so now the error 

propagation. So, either can propagate weather in the positive direction or negative direction. 

Suppose let us say we have a function 𝑓(𝑥) that is dependent on single variable x. And assuming 

that �̃� is an approximation of x. Now we would like to assess the effect of the discrepancy between 

x and �̃� on the value of the function. 

 

So, let us say we would estimate �̃� is  

�̃� = |𝑓(𝑥) − 𝑓(�̃�)| 
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now here the evaluating this the problem here in evaluating these guys the value of 𝑓(𝑥) which is 

unknown. So, how we can overcome this? So, we can actually overcome by using the Taylor series 

approximation and through this approximate value, so what do you write  

𝑓(𝑥) = 𝑓(�̃�) + 𝑓′(�̃�)(𝑥 − �̃�) + ⋯ 

So, we can write now 

∆ 𝑓(�̃�) = |𝑓′(�̃�)|∆�̃� 

where this guy is essentially represents the difference, now and ∆�̃� is represent the error which is 

(𝑥 − �̃�) estimate the error of x. So, this particular expression provides the capability to 

approximate the error in 𝑓(𝑥) for a given derivative. And how one can see that graphically let us 

see if you have a function 𝑓(𝑥) and this is going on x and this is the curve. 

 

Let us say this is the tangent and so this goes like this. So, this is our true error and this guy is the 

|𝑓′(�̃�)|∆�̃� which is sort of an estimated error and this would be our this is ∆�̃� this is x, so these 

differences ∆�̃�. So, you can see what is true error what is estimated error and how we see these 

things.  

(Refer Slide Time: 14:02) 

 

Now we can have also this thing for more than one variable like same Taylor series expression for 

more than one variable. So, we can generalize that let us say we have two independent variables 

which is u and v, then the Taylor series can be written as  
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𝑓(𝑢𝑖+1, 𝑣𝑖+1) = 𝑓(𝑢𝑖, 𝑣𝑖) +
𝜕𝑓

𝜕𝑢
(𝑢𝑖+1 − 𝑢𝑖) +

𝜕𝑓

𝜕𝑣
(𝑣𝑖+1 − 𝑣𝑖)

+
1

2!
[
𝜕2𝑓

𝜕𝑢2
(𝑢𝑖+1 − 𝑢𝑖)

2 +
𝜕2𝑓

𝜕𝑣2
(𝑣𝑖+1 − 𝑣𝑖)2 + 2

𝜕2𝑓

𝜕𝑢𝜕𝑣
(𝑢𝑖+1 − 𝑢𝑖)(𝑣𝑖+1 − 𝑣𝑖)] 

So, these are the term which will appear like this there will be so on. So, if you have now if all 

derivatives are evaluated the base point i and if all second order and higher order terms can be 

drop, then we can write that  

∆𝑓(�̃�, �̃�) = |
𝜕𝑓

𝜕𝑢
| ∆�̃� + |

𝜕𝑓

𝜕𝑣
| ∆�̃� 

So, here ∆�̃�, ∆�̃� these are the estimates of the errors in u and v respectively. So, we can see that 

now similarly if you have independent variables. 

 

For example, �̃�1, �̃�2, �̃�3, … , �̃�𝑛 then we can write that  

∆𝑓(�̃�1, �̃�2, �̃�3, … , �̃�𝑛) = |
𝜕𝑓

𝜕�̃�1
| ∆�̃�1 + |

𝜕𝑓

𝜕�̃�2
| ∆�̃�2 + ⋯ + |

𝜕𝑓

𝜕�̃�𝑛
| ∆�̃�𝑛 

So, the one which we have looked at we can actually �̃�𝑛 that concept to the higher level or more 

than one variable. 

(Refer Slide Time: 16:59) 

 

Now when we are talking about the error expression approximation then there is another thing 

would you talk about is the stability. So, now there is stability one is important because any of 

these numerical methods. The condition of a mathematical problem relates to its sensitivity to the 
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change in its input values. So, we can say if the numerical results or numerical system is unstable 

if the uncertainty of the input values is grossly magnified by the numerical method. 

 

So, that means the methods should be always stable that means it should be able to handle some 

of the uncertainties. Now one can we can look at this simply by looking at the Taylor series like 

what we had  

𝑓(𝑥) = 𝑓(�̃�) + 𝑓′(�̃�)(𝑥 − �̃�) 

So, the relative error for 𝑓(𝑥) would be the relative error that we can estimate is that  

𝑓(𝑥) − 𝑓(�̃�)

𝑓(𝑥)
=

𝑓′(�̃�)(𝑥 − �̃�)

𝑓(�̃�)
 

So, these are the errors that you have, so one important number which we will call the condition 

number. So, this can be defined as the ratio of these relative errors that means condition number is  

�̃�𝑓′(�̃�)

𝑓(�̃�)
 

So, this provides and measure of the extent to which an uncertainty in x range is magnified by 

𝑓(𝑥). So, this will give you an idea like how the uncertainty in x or the input value can be 

magnified. 

 

So, the value of one tells us that the functionality is identical to the relative error in x, a value 

greater than 1 tells us that the see if this is greater than 1 that means the error is amplified. If it is 

less than 1 that means the error or these things are kind of attenuated and equals to 1 means it tells 

us the functions relative error is identical to the relative error of the x. So, depending on this 

condition number. 

 

Now so if sometimes if you have very large value of this condition number very large value, then 

this called the ill condition system and probably this ill condition system may not be a good idea 

or a good one to numerically handle. Now when you look at the total error, so you have total 

numerical error, so the total error would be sum of round of error plus truncation error and they 

are kind of depends on particularly stiff size. 
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Like if you have look at graphically if this is log of step size that is which is our h here difference 

or here if you see log of error. Now once the step size is increases in the log sense the log error 

also will increases like this the round off error also goes off. If step size is small, I mean this error 

would be small, step size is large this would be large so that total error could be the sum of this I 

mean like this, it goes in this kind of fashion. So, this is a point where point of sort of point of 

diminishing return. So, you can see how they are basically going to contribute to the system. 

(Refer Slide Time: 22:37) 

 

Now the numerical differentiation that we have looked at so we can see the error like for example 

we can talk about the first derivative and where we have  

𝑓′(𝑥𝑖) =  
𝑓(𝑥𝑖+1) − 𝑓(𝑥𝑖−1)

2ℎ
−

𝑓3(𝜉)

6
ℎ2 

So, this is my truncation error, so when I write the first derivative so if two function values in the 

numerator of the finite difference premise have no round off error then the error only is due to the 

truncation. 

 

But we are using digital computer to solve this. So, the function values do include round off errors 

as like  

𝑓(𝑥𝑖−1) = 𝑓(𝑥𝑖−1) + 𝑒𝑖−1 

error in that and  

𝑓(𝑥𝑖+1) = 𝑓(𝑥𝑖+1) + 𝑒𝑖+1 
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So, these are these guys are rounded function. So, one can say rounded function, so and e’s are the 

associated round off error. Now once you substitute these things in this first derivative what we 

write  

𝑓′(𝑥𝑖) =   
𝑓(𝑥𝑖+1) − 𝑓(𝑥𝑖−1)

2ℎ
+

𝑒𝑖+1 − 𝑒𝑖−1

2ℎ
−

𝑓3(𝜉)

6
ℎ2 

So, this is again true value this is finite difference approximation. This is our round off error this 

is our truncation error. Now you can see when you do the approximation of the first derivative you 

get some truncation error you get some round off error. So, if they are ideally zero you get the 

proper approximation but in any numerical methods or any numerical methods when you 

transplant to the computer programming these are not going to be completely eliminated. 

 

So, there but the way one has to handle that. So, now assuming that the absolute value of each 

component of the round off error has an upper bound of epsilon and the maximum possible value 

of the differences will be 2𝜖. So, this the maximum possible value is roughly 2𝜖 then also the 

derivative that the third derivative has a maximum absolute value of M. So, this is having a 

maximum value of M. 

 

Then we can write this total error which is  

|𝑓′(𝑥𝑖) −   
𝑓(𝑥𝑖+1) − 𝑓(𝑥𝑖−1)

2ℎ
| ≤

𝜖

ℎ
+

ℎ2𝑀

6
 

so that you can see that an optimal step size can be determined by differentiating this particular 

error. So, if you differentiate this error for the maximum for step size minimum or optimal step 

size the result gives us that. 

 

So, if you do that from here one can get  

ℎ𝑜𝑝𝑡 = √
3𝜖

𝑀

3

 

So, this is the optimum step size that means all this error in this numerical approximation of first 

derivative I mean this is true for even higher order derivative like one can estimate second 
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derivative one can estimate third derivative also. So, these are associated with this kind of round 

off error and now one has to when you devise a numerical method. 

 

Obviously, these errors need to be controlled. So, unless you have, I mean either ideally you should 

have 0 of this rounds off error and truncation error which will lead to close or exact approximation 

but if not, one has to have a numeral algorithm in place or method in place. So that should lead to 

kind of reduce this error. 

(Refer Slide Time: 27:51) 

 

Now apart from this so you got all this round off error, truncation error these are what you can 

control through the numerical approach what is the optimal grip size and all these but there are 

some other things which can come from the human error or manual error like these are one can do 

a lot of blunders doing that. So, this can possibly happen during doing the mathematical modeling 

process, so can contribute to all other components of error. 

 

So, if you have some sort of human error in some stage of this approximation this can lead to other 

errors or the total error. So, this would usually happen when then there could be another problem 

which could happen is that formulation error like when we are devising that approximate approach 

or the mathematical expression that time one can wrongly divide or formulate the system so that 

it can lead to the formulation error.  
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So, there is a possibility of that or one can have like data uncertainty. So that is another thing which 

can lead to some sort of an error also. So, in totality that one has to have an accurate so that is the 

objective rather accurate numeric or methods to have that you should have all errors should be 

minimized or ideally zero. So, if that is the case then any numerical approach which will be 

equivalent to our physical system representation. 

 

Otherwise, it will represent a different physical system or different system of equation. So, 

whatever approximation we do. So, this is what one has to keep in mind when talking about 

numerical methods and these are sort of the background of it. Now we will continue our actual 

discussion in the next session. 
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