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So let us continue the discussion on root finding so we have looked at how to find roots through 

direct method and the iterative method.  

(Refer Slide Time: 00:25) 

 
Now today we are going to discuss about something else which is on multiple roots so we will 

look at the iterative method for multiple roots. So, let us say you have an equation which is like 

an equation is 𝑓(𝑥) = 0 and if 𝜉 the root 𝜉 is in a repeated root. So, what we can write  

𝑓(𝑥) = (𝑥 − 𝜉)𝑚𝑔(𝑥) = 0 

Now, g x would be obviously bounded and on top of that, the 𝑔(𝑥) ≠ 0. So, the root 𝜉 called 

a multiple root of multiplicity m.  

 

Now we obtain the equations, which is like if  

𝑓(𝜉) = 𝑓′(𝜉) = ⋯ = 𝑓𝑚−1(𝜉) = 0 

And  

𝑓𝑚(𝜉) ≠ 0 

So now so far whatever we have discussed there while determining the multiple roots, so they 

do not retain their order while determining a multiple root and the order is reduced at least by 

one. So, if the multiplicity of m of a root is known in advance, then we use some different 

methods like let us say we can do some Newton Raphson.  
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Similarly, what we have done like they are done in this, when you have multiple roots or rather 

the multiplicity of a particular root, then the Newton-Raphson becomes like  

𝑥𝑘+1 = 𝑥𝑘 − 𝑚
𝑓𝑘
𝑓𝑘′

 

where k is 0 1 2 like that and the order of this particular method would be second order. So, it 

does not hurt too much, because you still achieve the second order accurate things.  

(Refer Slide Time: 03:07) 

 
Similarly, one can write the Chebyshev method so, in that case the function which is evaluated 

will be  

𝑥𝑘+1 = 𝑥𝑘 −
𝑚(3 − 𝑚)

2

𝑓𝑘
𝑓𝑘′

−
𝑚2

2
[
𝑓𝑘
𝑓𝑘′

]
2 𝑓𝑘′′

𝑓𝑘′
 

for k goes from 0 1 2 so on and the order of this particular method is p = 3 or an alternative 

way one can write like we applied the previously that we have discussed let us say we define a 

equation  

𝐺(𝑥) = 0 

 where  

𝐺(𝑥) =
𝑓(𝑥)

𝑓′(𝑥)
 

So now it has a 𝐺(𝑥) has some simple root design regardless of the multiplicity of the root 

𝑓(𝑥) = 0. So, the Newton-Raphson when we apply Newton-Raphson it becomes so applying 

Newton-Raphson we get  

𝑥𝑘+1 = 𝑥𝑘 −
𝐺(𝑥𝑘)

𝐺′(𝑥𝑘)
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or one can rewrite this 

𝑥𝑘+1 = 𝑥𝑘 −
𝑓(𝑥𝑘)𝑓′(𝑥𝑘)

[𝑓′(𝑥𝑘)]2 − 𝑓(𝑥𝑘)𝑓′′(𝑥𝑘)
 

so, where k is 0 1 like that 2. So, now, similarly, for this particular equation, what we have here 

like this the secant method can be written as like  

𝑥𝑘+1 =
𝑥𝑘−1𝑓(𝑥𝑘)𝑓

′(𝑥𝑘) − 𝑥𝑘𝑓(𝑥𝑘−1)𝑓
′(𝑥𝑘)

𝑓(𝑥𝑘)𝑓′(𝑥𝑘−1) − 𝑓(𝑥𝑘−1)𝑓′(𝑥𝑘)
 

(Refer Slide Time: 05:58) 

 
So, this is how you can write and similarly, you can write the like derivative free method so, 

where you write  

𝑥𝑘+1 = 𝑥𝑘 − 𝑊1(𝑥𝑘) − 𝑊2(𝑥𝑘) 

And 

𝑊1(𝑥𝑘) =
𝐹(𝑥𝑘)

𝑔(𝑥𝑘)
 

and  

𝑊2(𝑥𝑘) =
𝐹(𝑥𝑘 − 𝑊1(𝑥𝑘))

𝑔(𝑥𝑘)
 

and  

𝑔(𝑥𝑘) =
𝐹(𝑥𝑘 + 𝛽𝐹(𝑥𝑘)) − 𝐹(𝑥𝑘)

𝛽𝐹(𝑥𝑘)
 

and  

𝐹(𝑥) =
𝑓2(𝑥)

𝑓(𝑥 − 𝑓(𝑥)) − 𝑓(𝑥)
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So, here beta obviously is not equals to 0, which is an arbitrary constant so, this requires 6 

points on evaluation per iteration and the order of this particular method is also part of them. 

So, if you see when you have multiple roots, these are the things what you can write like for 

different approaches.  

(Refer Slide Time: 07:56) 

 
Now, we look at the iterative methods for a system of nonlinear equations so now, as we have 

done the discussion now, we are going to a system of nonlinear equation let us say given a 

system of equations, we can write  

𝑓1(𝑥1, 𝑥2, … , 𝑥𝑛) = 0 

𝑓2(𝑥1, 𝑥2, … , 𝑥𝑛) = 0 

𝑓𝑛(𝑥1, 𝑥2, … , 𝑥𝑛) = 0 

so, let us say system 1. Now, starting with the initial approximation, which is given at  

𝑥(0) = (𝑥1
(0), 𝑥2

(0), … , 𝑥𝑛
(0)) 

we obtain the sequence of iterations or iterates using the Newton Raphson method.  

 

So, what we can write like if we do the sequence of iteration where we can write  

𝑥(𝑘) = (𝑥1
(𝑘), 𝑥2

(𝑘), … , 𝑥𝑛
(𝑘))

𝑇
 

So, what do we write for Newton-Raphson as:  

𝑥(𝑘+1) = 𝑥(𝑘) − 𝐽−1𝑓(𝑘) 

where k is 0 1 2 so on and 𝑥(𝑘) given like that,  

𝑓(𝑘) = (𝑓1
(𝑘), 𝑓2

(𝑘), … , 𝑓𝑛
(𝑘))

𝑇
 

 

And 
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𝑓𝑖
(𝑘) = 𝑓𝑖(𝑥1

(𝑘), 𝑥2
(𝑘), … , 𝑥𝑛

(𝑘)) 

where J is the Jacobean matrix and the functions 𝑓1, 𝑓2, 𝑓𝑛 these are evaluated.  

 

So, these are the function which are actually evaluated at point 𝑥1, 𝑥2, … , 𝑥𝑛 like that. So, the 

convergence of this method which is also is second order, so now, this is what you get. Now, 

the other thing which may appear is if you have complex roots then what happens? 

(Refer Slide Time: 10:44) 

 
So let us say if you have complex roots, we have been given an equation which is 𝑓(𝑧) =

0, where 𝑧 = 𝑥 + 𝑖𝑦. So, this equation we can write in the form like 

𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦) = 0 

where 𝑢(𝑥, 𝑦) and 𝑣(𝑥, 𝑦) are the real and imaginary part of the 𝑓(𝑧) itself. So, the problem of 

finding this complex root 𝑓(𝑧) = 0 is equivalent to finding the solution x y of system of 2 

equations like 𝑢(𝑥, 𝑦) = 0, 𝑣(𝑥, 𝑦) = 0 and the initial condition would be 𝑥(0), 𝑦(0).  

 

So, we can find the series of sequence of iterates like we can write by using Newton-Raphson 

what we can write is like 

(
𝑥(𝑘+1)

𝑦(𝑘+1)) = (
𝑥(𝑘)

𝑦(𝑘)) − 𝐽−1 (
𝑢(𝑥(𝑘), 𝑦(𝑘))

𝑣(𝑥(𝑘), 𝑦(𝑘))
) 

where k goes from 0 1 2 like that and the Jacobean is given as  

𝐽 =

[
 
 
 
𝜕𝑢

𝜕𝑥

𝜕𝑢

𝜕𝑦
𝜕𝑣

𝜕𝑥

𝜕𝑣

𝜕𝑥]
 
 
 

𝑥(𝑘),𝑦(𝑘)
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So, this is the Jacobian so, the thing which we are written here we can this is one way one can 

look at it, but alternatively one can directly apply the Newton-Raphson to this particular 

equation.  

(Refer Slide Time: 13:11) 

 
So, if we applied directly to the alternative approach, one can think about that directly applying 

the Newton-Raphson to these particular equations where 𝑧 = 𝑥 + 𝑖𝑦, so, if we apply directly 

this that we can write  

𝑧𝑘+1 = 𝑧𝑘 −
𝑓(𝑧𝑘)

𝑓′(𝑧𝑘)
 

Where k= 1 2 like that. Now, this is what uses complex arithmetic now, the initial 

approximation here is it not is given that is also happens to be complex and then the secant 

method can also be applied using complex arithmetic.  

 

Now, once finding the one root which is let us say z1 then we can apply this Newton method 

for the deflated polynomials like  

𝑓∗(𝑧) =
𝑓(𝑧)

𝑧 − 𝑧1
 

So, this can be repeated after finding every root. So, if k roots are already obtained then iteration 

can be applied on the function like  

𝑓∗(𝑧) =
𝑓(𝑧)

(𝑧 − 𝑧1)(𝑧 − 𝑧2)… (𝑧 − 𝑧𝑘)
 

and the new iteration of what we can write  

𝑧𝑘+1 = 𝑧𝑘 −
𝑓∗(𝑧𝑘)

𝑓∗′(𝑧𝑘)
 

324



Now, the competition of this particular quantity 

𝑓∗′

𝑓∗
=

𝑑

𝑑𝑧
(log 𝑓∗) =

𝑑

𝑑𝑧
[𝑓(𝑧) − log(𝑧 − 𝑧1)] =

1

(𝑧 − 𝑧1)
 

so, that is what you get. 

(Refer Slide Time: 15:33) 

 
Hence, the computations are carried out like  

𝑓∗′(𝑧𝑘)

𝑓∗(𝑧𝑘)
=

𝑓′(𝑧𝑘)

𝑓(𝑧𝑘)
=

1

(𝑧𝑘 − 𝑧1)
 

So, there are some precautions one has to take like number 1 any 0 often by using the deflated 

polynomial should be refined by applying Newton's method. So, to original polynomial with 

the 0 as the starting approximation that is  

i) Handling of zero 

ii) Computation of zero 

 

So, the computation of 0 so, the 0 should be so, this is how one can get these things when you 

have some complex roots. Now, we will talk about none slightly more about like similarly 

iterative methods for polynomial equation. Now, we are slowly increasing the order of 

complexity and polynomial equation. So, what it says that whatever we have so, far discussed 

can be directly applied to obtain the roots of a polynomial of degree n like if it is  

𝑃𝑛(𝑥) = 𝑎0𝑥
𝑛 + 𝑎1𝑥

𝑛−1 + ⋯+ 𝑎𝑛−1𝑥 + 𝑎𝑛 = 0 

Let us say equation 1 for are all these 𝑎0, 𝑎1, … , 𝑎𝑛 these are the real numbers very often we 

are interested to determine all the roots whether it is with could be real, could be complex, 

could be simple root or multiple roots. So, we have already seen all the processes or the 
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methods that can find real root, complex root, simple root or multiple roots. So, then what do 

we need to know  

i) the exact number of real and complex roots along with their multiplicities 

ii) the interval in which each real roots lies  

so, these are the things that one has to take care so, then what we can often using the Sturm 

sequences that. 

(Refer Slide Time: 18:37) 

 
Let us 𝑓(𝑥) be the given polynomial of degree n an 𝑓1(𝑥) denotes first order derivative, its first 

order derivative, then what 𝑓2(𝑥) the remainder of 
𝑓′(𝑥)

𝑓1(𝑥) 
 with the reverse sign and 𝑓3(𝑥) is the 

remainder of 
𝑓1(𝑥)

𝑓3(𝑥) 
 like this. So, until we get the constant number is often the sequence of these 

functions like 

𝑓(𝑥), 𝑓1(𝑥), 𝑓2(𝑥), … , 𝑓𝑛(𝑥) 

is called a Sturm sequence.  

 

And the number of real roots for the equation 𝑓(𝑥) = 0 in a and b equals the difference between 

the number of sign changes in the Sturm sequence of 𝑓(𝑥) = 0 sequence at x = a and x = b 

provided 𝑓′(𝑎) ≠ 0 and 𝑓′(𝑏) ≠ 0. So, one has to note that if any function in the Sturm 

sequence becomes 0 for some value of x will give it to the sign of the immediately preceding 

term. So, what if 𝑓(𝑥) = 0 has multiple roots, we obtain the Sturm sequence like  

𝑓(𝑥), 𝑓1(𝑥), 𝑓2(𝑥), … , 𝑓𝑟(𝑥) 
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And in this case, 𝑓𝑟(𝑥) will be the constant, since 𝑓𝑟(𝑥) gives the greatest common divisor of 

𝑓(𝑥)𝑎𝑛𝑑 𝑓′(𝑥), the multiplicity of root 𝑓(𝑥) = 0 is one more than the root of a 𝑓𝑟(𝑥) = 0. So, 

we have done a new time sequence by dividing all the function like 

𝑓(𝑥), 𝑓1(𝑥), 𝑓2(𝑥), … ,
𝑓𝑟(𝑥)

𝑓𝑟(𝑥)
 

and using that sequence, you determine the real number of real roots of the equation 𝑓(𝑥) = 0 

and the same way one can take into account the multiplicity of these 𝑓(𝑥) = 0.  

 

Now, one thing is that while obtaining this Sturm sequence, any positive constant common 

factor in any Sturm function 𝑓𝑖(𝑥) can be so that has to be neglected. Since the polynomial has 

degree in so it must have exactly n roots, the number of complex roots equals to the n number 

of real roots, that the real root of multiplicity M is counted as m times. Let us say, 𝑥 = ξ is a 

real root of 𝑃𝑛(𝑥) = 0, then 𝑥 − ξ must divide 𝑃𝑛(𝑥) exactly. So also, if 𝑥 = 𝛼 + 𝑖𝛽 is a 

complex root of 𝑃𝑛(𝑥) = 0, then the complex conjugate 𝛼 − 𝑖𝛽 is also a root.  

(Refer Slide Time: 22:25) 

 
So, what we can write like that,  

{𝑥 − (𝛼 + 𝑖𝛽)}{𝑥 − (𝛼 − 𝑖𝛽)} = (𝑥 − 𝛼)2 + 𝛽2 

So, this is going to be  

𝑥2 − 2𝛼𝑥 + 𝛼2 + 𝛽2 

which is going to be  

𝑥2 + 𝑝𝑥 + 𝑞 

something like that where p and q must divide by 𝑃𝑛(𝑥) exactly so, this quadratic factor may 

have a pair of real roots or pair of complex roots. Hence, the iterative method for finding the 
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real and complex roots of 𝑃𝑛(𝑥) = 0 are based on the philosophy of extracting linear and 

quadratic factor of 𝑃𝑛(𝑥). 

 

Now, we assume that or rather assuming that 𝑃𝑛(𝑥) is complete the polynomial then it has n + 

1 terms, if the terms is not present to introduce it today, we can introduce that on with proper 

replacement with sort of an 0. Now, we will discuss different approaches or methods like first 

one is that Birge-Vieta method. So, in this case, we seek to determine the real number P such 

that x - p becomes a factor of 𝑃𝑛(𝑥) starting with P(0).  

 

So, you can find out the sequence of iteration like 𝑝𝑘 so, this is let us say  

𝑝𝑘+1 = 𝑝𝑘 −
𝑝𝑛(𝑝𝑘)

𝑝𝑛′(𝑝𝑘)
 

where k = 0 1 like this or one can write  

𝑝𝑘+1 = 𝑝𝑘 −
𝑏𝑛

𝐶𝑛−1
 

so, k = 0 1 2 like that, which is also a sort of an Newton-Raphson method. Now, the values of 

𝑏𝑛 𝑎𝑛𝑑 𝐶𝑛 are often from the recurrence relation, like  

𝑏𝑖 = 𝑎𝑖 + 𝑝𝑘𝑏𝑖−1 

where i = 0 to n, 

𝐶𝑖 = 𝑏𝑖 + 𝑝𝑘𝐶𝑖−1 

where i = 0 to n - 1 and  

𝐶0 = 𝑏0 = 𝑎0 

and  

𝑏−1 = 0 = 𝐶−1 

So, we can also kind of obtain by using synthetic division method.  

(Refer Slide Time: 25:21) 
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So that is another option that we can have a now when p has been so, what we have that when 

there is a limit 

lim
𝑘→∞

𝑏𝑛 = 0 

and in the limit,  

lim
𝑘→∞

𝑝𝑘 = 𝑝 

so, the order of this method is also the order is second order. So, now, when p has been like in 

a synthetic now, P has been determined to desired accuracy, we expect the next linear factor 

for deflated polynomial like  

𝑄𝑛−1(𝑥) =
𝑝𝑛(𝑥)

𝑥 − 𝑝
= 𝑏0𝑥

𝑛−1 + ⋯+ 𝑏𝑛−1 

so this can also be obtained by first part of the synthetic division.  

 

Now, synthetic division procedure for obtaining 𝑏𝑛 is same that honours method for evaluating 

the polynomial 𝑝𝑛(𝑝𝑘) which is the most efficient way of evaluating the polynomial. So now, 

we can exact a multiple root of multiplicity m is in Newton-Raphson where we write 

𝑝𝑘+1 = 𝑝𝑘 − 𝑚
𝑏𝑛

𝐶𝑛−1
 

for k goes from 0 1 like that. So, in this case also one has to be careful while finding the deflated 

polynomial for example, m = 2, as k tends to infinity, 𝑓(𝑥) becomes 𝑏𝑛 which tends to 0 and 

𝑓′(𝑥) becomes 𝐶𝑛−1 tends to 0. 

(Refer Slide Time: 27:40) 
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So, now, there are other methods which one can also like use for example, Bairstow method 

with can also be so, this method is used for find to real numbers p and q such that 

𝑥2 + 𝑝𝑥 + 𝑞 

is a factor of 𝑝𝑛(𝑥). Now, we starting with 𝑝0 and 𝑞0 and iterate over 𝑝𝑘 and 𝑞𝑘. So, what we 

can get is that  

𝑝𝑘+1 = 𝑝𝑘 + ∆𝑝𝑘 

and  

𝑞𝑘+1 = 𝑞𝑘 + ∆𝑞𝑘 

where k goes from 0 1 like that and ∆𝑝𝑘 is given as 

∆𝑝𝑘 = −
𝑏𝑛𝐶𝑛−3 − 𝑏𝑛−1𝐶𝑛−2

𝐶𝑛−2
2 − 𝐶𝑛−3(𝐶𝑛−1 − 𝑏𝑛−1)

 

And  

∆𝑞𝑘 = −
𝑏𝑛(𝐶𝑛−1 − 𝑏𝑛−1) − 𝑏𝑛𝐶𝑛−2

𝐶𝑛−2
2 − 𝐶𝑛−3(𝐶𝑛−1 − 𝑏𝑛−1)

 

So, the values of 𝑏𝑖 and 𝐶𝑖 which are obtain 2 recurrence relation like  

𝑏𝑖 = 𝑎𝑖 − 𝑝𝑘𝑏𝑖−1 − 𝑞𝑘𝑏𝑖−2 

where i goes from 1 to n.  

𝐶𝑖 = 𝑏𝑖 − 𝑝𝑘𝐶𝑖−1 − 𝑞𝑘𝐶𝑖−2 

where i goes 1 to n-1, 

𝐶0 = 𝑏0 = 𝑎0 

and  

𝑏−1 = 0 = 𝐶−1 

So, I mean one can also kind of get these coefficients using the synthetic division.  
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But this is how one can use this method to find the there are other methods like one can use 

like Laguerre method. So, here we define the parameter like A, which is 

𝐴 = −
𝑝𝑛′(𝑥𝑘)

𝑝𝑛(𝑥𝑘)
 

And 

𝐵 = 𝐴2 −
𝑝𝑛′′(𝑥𝑘)

𝑝𝑛(𝑥𝑘)
 

 So, this method which leads to the getting the iteration like 

𝑥𝑘+1 = 𝑥𝑘 +
𝑛

𝐴 ± √(𝑛 − 1)(𝑛𝐵 − 𝐴2)
 

these parameters are obtained using synthetic division method. 

 

So, the sign in the denominator of the of this particular equation is taken as the sign of A to 

make the denominator here largest in magnitude and order of this method for convergence is 

also second order. Now, what we can now look at is that another method which is called 

Graeffe’s root squaring method. So, this is a direct method and it is used to find out all the roots 

of a polynomial. So, this is a direct method of with real coefficients, the roots could be real and 

distinct, real and equal or complex we can separate the roots.  

 

And then, so let us say 𝜉1, 𝜉2, 𝜉3, … , 𝜉𝑛 our roots of equation of this polynomial equation these 

are roots of this  

𝑃𝑛(𝑥) = 𝑎0𝑥
𝑛 + ⋯+ 𝑎𝑛−1𝑥 + 𝑎𝑛 = 0 

so, these are the roots of this equation.  
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Now, we are separating the even power of 𝑥𝑛 squaring, we get  

(𝑎0𝑥
𝑛 + 𝑎2𝑥

𝑛−2 + ⋯)2 = (𝑎1𝑥
𝑛−1 + 𝑎3𝑥

𝑛−3 + ⋯)2 

Now, once we simplify what we get in  

𝑎0
2𝑥2𝑛 − (𝑎1

2 − 2𝑎0𝑎2)𝑥
2𝑛−2 + ⋯+ (−1)𝑛𝑎𝑛

2 = 0 

Here we substitute  

𝑧 = −𝑥2 

what do we get 

𝑏0𝑧
𝑛 + 𝑏1𝑧

𝑛−1 + ⋯+ 𝑏𝑛−1𝑧 + 𝑏𝑛 = 0 

So, which has a root this guy has root of −𝜉1
2, −𝜉2

2, −𝜉3
2, … , −𝜉𝑛

2. 

 

And the coefficients which can be obtained like can one can see like 𝑎0, 𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑛 like 

this is 𝑎0
2, 𝑎1

2, 𝑎2
2, … , 𝑎𝑛

2. So, how do we find the k + 1 column in this particular table which 

is a tricky term so you can see the each terms in each column alternated signs starting with the 

positive sign. So, the first term in the square of the k + 1 coefficient is a k, the second term 

would be twice of that. 
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And so, once we repeat that procedure for m times, we can obtain an equation like 

𝐵0𝑥
𝑛 + 𝐵1𝑥

𝑛−1 + ⋯+ 𝐵𝑛−1𝑥 + 𝐵𝑛 = 0 

So, what do we get, so the roots are 𝑅1, 𝑅2, 𝑅3, … 𝑅𝑛 where 𝑅𝑖 = −𝜉𝑖
2𝑚,  i = 1, 2, … n. So, we 

can obtain from this particular equation that 

|𝑅𝑖| =
|𝐵𝑖|

|𝐵𝑖−1|
= |𝜉𝑖|

2𝑚 

So,  

log|𝜉𝑖| = 2−𝑚[log|𝐵𝑖| − log|𝐵𝑖−1|] 

So, this determines the magnitude of the roots and substitution this in the original equation with 

the sign of the root. Now, we can stop squaring process when another starting process produces 

new coefficients. And after a few squaring actually, the magnitude of the coefficient 𝐵𝐾 is half 

the square of the magnitude of the corresponding coefficient the previous equation, so, which 

indicates that 𝐵𝐾 is a double root we can find the double root by like  

𝑅𝐾 = −
𝐵𝐾

𝐵𝐾−1
 

and  

𝑅𝐾+1 = −
𝐵𝐾+1

𝐵𝐾
 

where  

𝑅𝐾𝑅𝐾+1 = 𝑅𝐾
2 =

𝐵𝐾+1

𝐵𝐾−1
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Or one can write  

|𝑅𝐾|2 = |𝜉𝐾|2(2𝑛) = |
𝐵𝐾+1

𝐵𝐾
| 

like this so, this gives the magnitude of the double root substitution this in the given equation 

you can find it sign. So, double root can also be found directly since 𝑅𝐾 and 𝑅𝐾+1 converge to 

the same root after sufficient squaring. Now, if 𝜉𝐾 and 𝜉𝐾+1 form a complex pair then this 

would also cause the coefficient of 𝑥𝑛−𝑘 in the successive squaring to fluctuate both in 

magnitude and sign.  

 

So, if 𝜉𝐾, 𝜉𝐾+1 = 𝛽𝐾 exp(±𝑖ϕ𝑘)  is a complex pair we are in the coefficient would fluctuate in 

magnitude and sign by amount like 2𝛽𝐾
𝑚 cos(𝑚ϕ𝑘). So, a complex pair can be spotted by 

such oscillation like for m sufficiently large is the  

𝛽𝐾
2(2𝑚) ≅

𝐵𝐾+1

𝐵𝐾−1
 

and which will be determined like  

2𝛽𝐾
𝑚 cos(𝑚ϕ𝑘) ≅

𝐵𝐾+1

𝐵𝐾−1
 

so, if the equation has only one complex pair. 

 

Then we can first determine all the real roots and the complex pair can be written like  

𝜉𝐾, 𝜉𝐾+1 = 𝑝 ± 𝑖𝑞 

and the sum of the roots would lead to like 𝜉1 + 𝜉2 + ⋯ and so on 𝜉𝑛 = −𝑎1. So, this will 

determine P and we also have like 𝛽𝐾
2 = 𝑝2 + 𝑞2. Since magnitude of 𝛽𝐾 is already determine 

these equations provides q.  
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So, this provides q this provides p so that is how you can find out so, that is pretty much actually 

gives you an idea of how you can find out roots for I mean when you have real root for a 

polynomial and the functions are distinct root or complex. So, we will stop here and continue 

the discussion in the next session. 

 

335


