
Computational Science in Engineering 

Prof. Ashoke De 

Department of Aerospace Engineering 

Indian Institute of Engineering - Kanpur 

 

Lecture - 36 

Numerical Analysis 

 

So, we have looked at the numerical differential procedure now how to get the differentiation. 

Now we will look at the numerical integration and this is what we come across different 

function where we need to integrate within some interval and how we can do that numerically 

that is what we are going to now discuss.  

(Refer Slide Time: 00:32) 

 
So let us start with the numerical integration part. So, let us say we have an integral, which is 

let us say function within that  

𝐼 = ∫ 𝑤(𝑥)𝑓(𝑥)𝑑𝑥
𝑏

𝑎

 

so, this is what we have to integrate. So, now this is what we have to get numerically. Now, by 

the finite linear combination of the values 𝑓(𝑥), this can be written as like this 

∫ 𝑤(𝑥)𝑓(𝑥)𝑑𝑥
𝑏

𝑎

= ∑ 𝜆𝑘

𝑛

𝑘=0

𝑓(𝑥𝑘) 

So, where 𝑥𝑘 and k goes from 0 to n is called the abscissa or nodes which are distributed within 

the limit of integration between a and b.  
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And 𝜆𝑘 would be where k goes from 1 to n, which is called the weights. So, this is called 

abscissa and this is called the weight. The integration method of the quadrature rule where the 

𝑤(𝑥) > 0 this is called the weights function. So, the error of the integration is given us that 

𝑅𝑛 = ∫ 𝑤(𝑥)𝑓(𝑥)𝑑𝑥
𝑏

𝑎

− ∑ 𝜆𝑘

𝑛

𝑘=0

𝑓(𝑥𝑘) 

An integration method of this is said to be order p, if it produces exact result, where 𝑅𝑛 = 0.  

So, this is what we are going to get now, for a method of order m. Now, let us say we take an 

order m that is the method. So, in that case, what we get  

∫ 𝑤(𝑥)𝑥𝑖𝑑𝑥
𝑏

𝑎

− ∑ 𝜆𝑘

𝑛

𝑘=0

𝑓(𝑥𝑘
𝑖) = 0 

for i goes from 0 to m. Now, here the weights are 𝜆𝑘 and the abscissas are 𝑥𝑘. And so, error 

would be  

𝑅𝑛 =
𝐶

(𝑚 + 1)!
𝑓(𝑚+1)(𝜉) 

where 𝑎 < 𝜉 < 𝑏 and 𝐶 is nothing but  

𝐶 = ∫ 𝑤(𝑥)𝑥𝑚+1𝑑𝑥
𝑏

𝑎

− ∑ 𝜆𝑘

𝑛

𝑘=0

𝑓(𝑥𝑘
𝑚+1) 

So, this is what you get for a method with the order of m, you get this kind of error and the 

integration values.  

(Refer Slide Time: 03:49) 

 
Now, the one first we are going to look at is the Newton cotes integration method. So, these 

are different ways one can do that Newton cotes integration method. So, now, in this case here 
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𝑤(𝑥) = 1 and the nodes 𝑥𝑘’s are uniformly distributed between a and b. So, 𝑥0 = 𝑎 and 𝑥𝑛 =

𝑏 and the spacing is ℎ =
𝑏−𝑎

𝑛
. Since the nodes all these 𝑥𝑘 's can be represented as  

𝑥𝑘 = 𝑥0 + 𝑘ℎ 

where k goes from 0 to n.  

 

This method is called the Newton cotes integration method, where we can determine the 

weights of that 𝜆 case. Now, there are 2 types one could be close type. So, let us look at the 

close type and in the closed type what happens that n = 1 for n = 1 we get the trapezoidal rule 

which says  

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

=
ℎ

2
[𝑓(𝑎) + 𝑓(𝑏)] 

and where ℎ = 𝑏 − 𝑎 and the error term  

𝑅1 = −
ℎ3

12
𝑓′′(𝜉) 

where 𝑎 < 𝜉 < 𝑏.  

 

Now, similarly, you can have different order of n so, this is how for n = 2 you get it. Now, for 

example, you can also do it for n = 2 like if it is n = 2 then what you get like this  

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

=
ℎ

3
[𝑓(𝑎) + 4𝑓 (

𝑎 + 𝑏

2
) + 𝑓(𝑏)] 

and  

𝑅2 =
𝐶

3!
𝑓′′′(𝜉) 

where 𝑎 < 𝜉 < 𝑏 and ℎ =
𝑏−𝑎

2
. 

(Refer Slide Time: 06:33) 
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So, now the error term is given so, in this case the C would be  

𝐶 = ∫ 𝑥3𝑑𝑥
𝑏

𝑎

−
(𝑏 − 𝑎)

2
[𝑎3 + 4 (

𝑎 + 𝑏

2
)

3

+ 𝑏3] = 0 

So, we can see we can find out and finally, we get that  

𝑅2 = −
(𝑏 − 𝑎)5

2880
𝑓′′′′(𝜉) = −

ℎ5

90
𝑓′′′′(𝜉) 

where 𝑎 < 𝜉 < 𝑏. Now, similarly, you can get for different order n like n could be 3, 4, 5 like 

that and you can get all these different terms.  

(Refer Slide Time: 07:22) 

 
Like you can see here this is for weights for Newton cotes integration rule. So, what you get 

here is that different weights and for different order of accuracy of the method. So, there could 

be another option will be the open type method. Now, in open type method, your integral is 
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𝐼 = ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

= ∑ 𝜆𝑘

𝑛−1

𝑘=1

𝑓(𝑥𝑘) 

So, here 𝑥0 = 𝑎 and 𝑥𝑛 = 𝑏 which are these are the 2 points which are actually excluded.  

 

So, for example, for n = 2 you get this integral 

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

= 2ℎ𝑓(𝑎 + 𝑏) 

Where, ℎ =
𝑏−𝑎

2
 and the error would be  

𝑅1 = −
ℎ3

12
𝑓′′(𝜉) 

Similarly, for I mean so, that means, h is in generally it is ℎ =
𝑏−𝑎

𝑛
. And we can devise n = 3 

where 

𝐼 =
3ℎ

2
[𝑓(𝑎 + ℎ) + 𝑓(𝑎 + 2ℎ)] 

And 

𝑅3 =
3

4
ℎ3𝑓′′(𝜉) 

Similarly, n 4 or n 5 you can get where 𝑎 < 𝜉 < 𝑏. So, no matter what is the order of these 

things, you can always find out in those.  

(Refer Slide Time: 09:11) 

 
Now, we go to Gaussian integration methods. So, these are slightly different ways one can do 

a when both the nodes and the weights in the integration methods are to determine these are 

called the Gaussian integration method. So, in this case, like let us say 𝑓(𝑥) you have a 

polynomial of degree less than or equals to, so, degree is less than equals to (2n + 1). Then 
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𝑞𝑛(𝑥) with a lag range interpolating polynomial of degree which is less than equals to n then 

what we can write that  

𝑞𝑛(𝑥) = ∑ 𝑙𝑘(𝑥)

𝑛

𝑘=0

𝑓(𝑥𝑘) 

Where  

𝑙𝑘(𝑥) =
𝜋(𝑥)

(𝑥 − 𝑥𝑘)𝜋′(𝑥𝑘)
 

so, the polynomial |𝑓(𝑥) − 𝑞𝑛(𝑥)| has 0 at 𝑥0, 𝑥1 and 𝑥𝑛 hence, we can write that  

𝑓(𝑥) − 𝑞𝑛(𝑥) = 𝑃𝑛+1(𝑥)𝑟𝑛(𝑥) 

and 𝑟𝑛(𝑥) is a polynomial of almost a degree almost n and  

𝑃𝑛+1(𝑥𝑖) = 0 

for i 0 to n. Now, when you integrate this what do we get  

∫ 𝑤(𝑥)[𝑓(𝑥) − 𝑞𝑛(𝑥)]𝑑𝑥
𝑏

𝑎

= ∫ 𝑤(𝑥)𝑃𝑛+1(𝑥)𝑟𝑛(𝑥)𝑑𝑥
𝑏

𝑎

 

or we can write  

∫ 𝑤(𝑥)𝑓(𝑥)𝑑𝑥
𝑏

𝑎

= ∫ 𝑤(𝑥)𝑞𝑛(𝑥)𝑑𝑥
𝑏

𝑎

+ ∫ 𝑤(𝑥)𝑃𝑛+1(𝑥)𝑟𝑛(𝑥)𝑑𝑥
𝑏

𝑎

 

So, this is what we can write the second integral this term here is 0 if 𝑃𝑛+1(𝑥) is an orthogonal 

polynomial. So, if this is orthogonal so, this goes to 0 and so, this is orthogonal means this is 

orthogonal with respect to the weight function w then this goes to essentially 0.  

(Refer Slide Time: 12:22) 

 
So, then what we have is that  
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∫ 𝑤(𝑥)𝑓(𝑥)𝑑𝑥
𝑏

𝑎

= ∫ 𝑤(𝑥)𝑞𝑛(𝑥)𝑑𝑥
𝑏

𝑎

= ∑ 𝜆𝑘

𝑛

𝑘=0

𝑓(𝑥𝑘) 

Where 

𝜆𝑘 = ∫ 𝑤(𝑥)𝑙𝑘(𝑥)𝑑𝑥
𝑏

𝑎

 

So, now, what you can have been that you can see how we can write all these things. Now, we 

can say some Gauss Legendre integration method. So, in this case, we will consider the 

integration rule  

∫ 𝑓(𝑥)𝑑𝑥
1

−1

= ∑ 𝜆𝑘

𝑛

𝑘=0

𝑓(𝑥𝑘) 

now, the nodes x case are 0 for Legendre polynomials.  

 

So, here 𝑥𝑘’s are 0 so, the polynomial we have is  

𝑃𝑛+1(𝑥) =
1

2𝑛+1(𝑛 + 1)!

𝑑𝑛+1

𝑑𝑥𝑛+1
[(𝑥2 − 1)𝑛+1] 

The first few Legendre polynomials which are kind of given which is  

𝑃0(𝑥) = 0, 𝑃1(𝑥) = 𝑥, 𝑃2(𝑥) =
(3𝑥2 − 1)

2
, 𝑃3(𝑥) =

(5𝑥3 − 3𝑥)

2
  

and so on. So, the Legendre polynomials are orthogonal with respect to the weight function 

𝑤(𝑥) = 1. Now, the methods which we say it here are called the gauss Legendre integration 

method.  

(Refer Slide Time: 14:41) 

 
And we can get, for example, let us say we can write for n = 1 we get this is  
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∫ 𝑓(𝑥)𝑑𝑥
1

−1

= 𝑓 (−
1

√3
) + 𝑓 (

1

√3
) 

for similarly, n = 2, we get  

∫ 𝑓(𝑥)𝑑𝑥
1

−1

=
1

9
[5𝑓 (−

√3

5
) + 8𝑓(0) + 5𝑓 (

√3

5
)] 

like this and there are also error terms which are associated with that for n = 1 the error would 

be  

𝑒𝑟𝑟𝑜𝑟 =
1

135
𝑓(4)(𝜉) 

where −1 < 𝜉 < 1 this case the error would be  

𝑒𝑟𝑟𝑜𝑟 =
1

15750
𝑓(6)(𝜉) 

where −1 < 𝜉 < 1.  

(Refer Slide Time: 15:50) 

 
So, the nodes and the corresponding weight of this particular method which you can see it here. 

So, this is for different n 1, 2, 3, 4, 5 and like that and these are the weights what you find out 

and these are the nodes. So, this is what you can get for Gauss Legendre.  

(Refer Slide Time: 16:07) 
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Now, there is another one which is also known as a Lobatto integration method. So, these are 

different methods which one can apply for doing the numerical integration and this case also 

weight can write the function  

∫ 𝑓(𝑥)𝑑𝑥
1

−1

= 𝜆0𝑓(−1) + ∑ 𝜆𝑘

𝑛−1

𝑘=1

𝑓(𝑥𝑘) + 𝜆𝑛𝑓(1) 

So, this is called Lobatto integration these things in this case also weight function 𝑤(𝑥) = 1 

and there are 2 endpoints, which is - 1 and 1 these are taken as nodes and then rest of the nodes 

which can be integrated like this.  

 

So, for example, if n = 2, then we obtain a method like  

∫ 𝑓(𝑥)𝑑𝑥
1

−1

=
1

3
[𝑓(−1) + 4𝑓(0) + 𝑓(1)] 

where error would be  

𝐸𝑟𝑟𝑜𝑟 = −
1

90
𝑓(4)(𝜉) 

where −1 < 𝜉 < 1 

(Refer Slide Time: 17:27) 
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So, similarly, you can see these are the things for this is for Lobatto integration nodes and the 

weights in that integration. So, this is what you get for different nodes and integration points 

where you can have like.  

(Refer Slide Time: 17:54) 

 
Now, similarly, you may have like Radau integration method these are different methods where 

the different weights are used. And one can always check where again this was again the 

∫ 𝑓(𝑥)𝑑𝑥
1

−1

= 𝜆0𝑓(−1) + ∑ 𝜆𝑘

𝑛−1

𝑘=1

𝑓(𝑥𝑘) 

this is how it is written here the weight function is 1 and the lower limit that a = - 1 taken as a 

node, the remaining end nodes are determined. So, this is called Radau here, if it is n = 1, then 

this guy becomes 

∫ 𝑓(𝑥)𝑑𝑥
1

−1

=
1

2
𝑓(−1) +

3

2
𝑓 (

1

3
) 
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and where error could be  

𝐸𝑟𝑟𝑜𝑟 =
2

27
𝑓′′′(𝜉) 

where −1 < 𝜉 < 1.  

(Refer Slide Time: 18:55) 

 
So, these are the different. So, one can see what happens to n = 2 that this is written as  

∫ 𝑓(𝑥)𝑑𝑥
1

−1

=
2

9
𝑓(−1) +

16 + √6

18
𝑓 (

1 − √6

5
) +

16 − √6

18
𝑓 (

1 + √6

5
) 

and here the error will be  

𝐸𝑟𝑟𝑜𝑟 =
1

1125
𝑓(5)(𝜉) 

So, similarly, n could be 4 or 5 or 3 whatever it is and you can find out all the different weight 

functions for this kind of system.  

(Refer Slide Time: 19:48) 
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Now, there one can also look at I mean that we one can look at the textbook that Gauss 

Chebyshev. So, that is also one of the integration methods that one can look at but we can look 

at slightly another one to this you can check in textbook these are also another way of doing 

that, we look at Gauss Laguerre integration method. So, this is slightly different here, we 

consider the integral let us say  

∫ 𝑒−𝑥𝑓(𝑥)𝑑𝑥
∞

0

= ∑ 𝜆𝑘

𝑛

𝑘=0

𝑓(𝑥𝑘) 

here the weight function is given as 𝑒−𝑥, which is the weight function, and 𝑥𝑘’s are the 0 for 

polynomial, which is  

𝐿𝑛+1(𝑥) = (−1)𝑛+1𝑒𝑥
𝑑𝑛+1

𝑑𝑥𝑛+1
[𝑒−𝑥𝑥𝑛+1] 

sum of the term like 𝐿0(𝑥) = 1, 𝐿1(𝑥) = 𝑥−1, 𝐿2(𝑥) = 𝑥2 − 4𝑥 + 2 and so on. Now, this is 

Laguerre polynomial is orthogonal on so this is orthogonal on (0, ∞) with respect to the weight 

function 𝑒−𝑥.  

(Refer Slide Time: 21:31) 

 
So, the integration method for let us say, for n = 1 what we can write that  

∫ 𝑒−𝑥𝑓(𝑥)𝑑𝑥
∞

0

=
2 + √2

4
𝑓(2 − √2) +

2 − √2

4
𝑓(2 + √2) 

and the error which is associated with that this would be  

𝐸𝑟𝑟𝑜𝑟 =
1

6
𝑓(4)(𝜉) 

where −1 < 𝜉 < 1.  
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So, you can see for different n what could be the nodes and what do you even get that like 

different weight function for that kind of things.  

(Refer Slide Time: 22:23) 

 
So, now, another is which we can quickly look is that Gauss Hermite integration. So, in that 

case, the function is integrated between  

∫ 𝑒−𝑥2
𝑓(𝑥)𝑑𝑥

∞

−∞

= ∑ 𝜆𝑘

𝑛

𝑘=1

𝑓(𝑥𝑘) 

where the weight function here 𝑒−𝑥2
 and the 𝑥𝑘 are the nodes or the roots of the Hermite 

polynomial and which is given as 

𝐻𝑛+1(𝑥) = (−1)𝑛+1𝑒−𝑥2 𝑑𝑛+1

𝑑𝑥𝑛+1
[𝑒−𝑥2

] 

Some of the terms like 𝐻0(𝑥) = 1, 𝐻1(𝑥) = 2𝑥, 𝐻2(𝑥) = 2(2𝑥2 − 1) and so on. So, the 

Hermite polynomial is orthogonal to this weight function in between in the domain minus 

infinity to plus infinity. So, the Gauss Hermite integration method can be obtained like that.  

(Refer Slide Time: 23:41) 
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So, these are also the nodes for that, and for let us say n = 1. We can say  

∫ 𝑒−𝑥2
𝑓(𝑥)𝑑𝑥

∞

−∞

=
√𝜋

2
[𝑓 (−

1

√2
) + 𝑓 (

1

√2
)] 

where the error which is associated with that is 

𝐸𝑟𝑟𝑜𝑟 =
√𝜋

48
𝑓(4)(𝜉) 

so, that is how you get it. And similarly, for n = 2,  one can write like this as shown on the 

screen and these are the different integration rule.  

(Refer Slide Time: 25:13) 

 
So, now, we can see one quicker thing which is called composite integration method. So, which 

is like that to avoid the use of higher order methods and still obtain accurate result. We can use 

composite integration methods. So, let us say we divide the interval [𝑎, 𝑏] or [−1,1],into 
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number of sub interval and evaluate the integral in each sub interval. So, for example, we can 

have similarly composite trapezoidal method.  

 

So, that means, the whole interval between (𝑎, 𝑏) are divided into multiple intervals and every 

interval you get the rule. So, for example, (𝑎, 𝑏) which is divided by N sub interval. So, we get 

the sub intervals are (𝑥𝑖−1, 𝑥𝑖) which are i goes to 1 to n and h would be ℎ =
𝑏−𝑎

𝑁
 where 𝑥0 = 𝑎 

𝑥𝑁 = 𝑏 and 𝑥𝑖 = 𝑥0 + 𝑖ℎ, i from 1 to n - 1. So, what we can get is that 

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

= ∫ 𝑓(𝑥)𝑑𝑥
𝑥1

𝑥0

+ ∫ 𝑓(𝑥)𝑑𝑥
𝑥2

𝑥1

+ ⋯ + ∫ 𝑓(𝑥)𝑑𝑥
𝑥𝑁

𝑥𝑁−1

 

So, evaluating each integral and using the trapezoidal rule and this side will give you 

=
ℎ

2
[𝑓0 + 2(𝑓1 + 𝑓2 + ⋯ + 𝑓′

𝑁−1
) + 𝑓𝑁] 

(Refer Slide Time: 27:06) 

 
So, this is what you get and the error which would be associated with that  

𝑒𝑟𝑟𝑜𝑟 = −
ℎ3

12
[𝑓′′(𝜉1) + 𝑓′′(𝜉2) + ⋯ + 𝑓′′(𝜉𝑁)] 

where 𝑥𝑖−1 < 𝜉 < 𝑥𝑖. So, this is what you get and similarly, you can have composite Simpson's 

rule. So, this case also so we can have similarly the composite Simpson’s rule and where we 

can get this integration done.  

 

So, you see that when you have this whole thing just instead of going for, I mean there are 

different order methods. And you can see instead of going for higher order methods, you can 

divide into multiple sub interval like this and get the integration done. So, we will stop here 
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and this composite Simpson rule and another small portion like double integration we will look 

at in the next session before continuing with the other discussion. 
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