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Linearized Flow Problems (Contd.) 
 
 

So as example example of solution for linearized flow problems, we consider subsonic 

flow first wavy wall and the solution gave us few important observations and the most 

important of them, that you found the perturbation is maximum on the wall itself, and as 

we move away from the wall the perturbation decreases, there all then attenuation factor 

we also saw that the attenuation reduces as Mach number increases. Now, we will 

consider this same example in Supersonic flow, that is a Supersonic flow past or wave 

shift wall. 
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So, this is what we will be discussing today, a Supersonic flow past wavy wall the 

problem is essentially the same that is, we have an wave shaped wall the amplitude once 

again is h and length of 1 wave is once again, l that is once again the wall is given by y 

minus h sin alpha x equal to 0, where alpha is 2 pi by l, the governing equation in this 



case is once again 1minus m infinity square or since, 1 minus m infinity square is 

negative. We write this as m infinity square minus 1 d 2 phi dx 2 minus d 2 phi dy 2 

equal to 0. 

As, we have mentioned earlier that this equation is hyperbolic and of course, we do not 

need to specify boundary condition in all boundary, which is the property of hyperbolic 

partial differential equation and also they represent of propagation problem. 
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Now, this time we consider write m infinity square minus 1 equal to beta square, please 

note the change in the sin of beta square in the subsonic case, we consider 1 minus M 

infinity square to be beta square, but now, we take m infinity square minus 1 equal to 

beta square and then this equation becomes d 2 phi dx square minus 1 by beta square d 2 

phi dy square. Once again, it must be remembered that phi in this equation is 

perturbation potential; that is phi is perturbation potential and it is gradient gives the only 

the perturbation velocity, not the total velocity. So, for to find the total velocity pre 

stream velocity, must be added to this perturbation velocity which is gradient of phi.  

Now, this is familiar wave equation and we have very well known solution for this, 

which is phi x y is function of x minus beta y plus g into x plus beta y, the solution is 

quiet well known.  



Now, for the time being, we set g equal to 0 and we see while g chosen to be 0 in fact, it 

has something to do with the direction of the flow and which makes a distinction 

between upstream and downstream, which is again a property of the hyperbolic partial 

differential equation. Now, to find the explicit form of this function f, we consider the 

boundary condition, the boundary conditions are of course, the same as in case of 

subsonic flow, there is no change in boundary conditions using the wall boundary 

condition. using the wall boundary condition  

Which says, that the slope of the streamline is same as the slope of the body at which is 

of course, linearized as before. Which gives that d phi dy at y equal to 0. We see, here 

that instead of evaluating the velocity component on the wall itself, we are evaluating at 

y equal to 0 that is the linearization or approximation, but consistent with the linearized 

contribution theory and this gives minus beta x prime x minus beta y at y equal to 0, 

remember that f prime is that is, f is differentiated with respect to it is argument. 
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Now, d phi dy at y equal to 0 which, we have already seen is minus u infinity h by beta 

sin alpha x equal to this is what, we get substituting d phi dy y equal to 0 whereas, before 

d phi dy. ((no audio 09:59 to 10:32))  

So, this is the function explicit form of the function f and hence or potential becomes 

perturbation potential is y x y equal to function of x minus beta y. Which is or in terms of 

mach number, this can be written as sin alpha x minus root over m infinity square minus 



1 into y the perturbation velocity components are d phi dx that makes, infinity alpha h by 

beta cos of alpha into x minus beta y, u infinity alpha h cos of alpha into x minus beta y. 

(Refer Slide Time: 12:37) 

 

And the linearized pressure coefficient is minus 2 u by u infinity that gives 2 alpha h by 

beta cos of alpha x minus beta y or in terms of Mach number. It is root over m infinity 

square minus 1 for alpha x minus root over m infinity square minus 1 y. 

So, this is the linearized pressure coefficient and what we see here, that we did not need 

to satisfy any boundary condition at infinity to obtain, this solution that is again as a 

special property of hyperbolic partial differential equation that, we do not need to satisfy 

the boundary condition at all boundaries. Now, look into this perturbation velocity and 

pressure coefficient what immediate, we can see is that there is no exponential 

attenuation factor here.  

So, the first observation that we can make is no exponential attenuation factor in u, v or 

C p and it simply means that the perturbations do not vanishes. As, we increase our y 

which is unlike subsonic case however, we saw that the perturbation decreases as y is 

increased in this case you see that of course, the highest perturbation is obviously still on 

the wall, but it is not decreasing with increasing distance, meaning that in a supersonic 

flow the perturbation will not vanished. Even at very far distance; very far off from the 

body. So, supersonic perturbation will not vanish even at very great distance from the 



body. In fact, what we can see here that the perturbation remains constant perturbation 

remain constant as long as this remain constant.  

So, now x minus beta y equal to constant is essentially, as straight line in the x y plane. 

So, the perturbation is constant along along the lines x minus beta y equal to constant. 
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And obviously, these lines make an angle beta or we say that or we can say that the 

constant perturbation along lines that are inclined at Mach angle to the undisturbed 

stream. That is, along any line which makes Mach angle with respect to the undisturbed 

stream the perturbation remains constant, even up to infinity or in practical case to a very 

large distance. Now, the lines which makes Mach angle with the with respect to the 

undisturbed stream are called as before, we have called them the Mach lines. These are 

the Mach lines or the characteristic lines.  

So, the perturbations remain constant along the Mach lines or the characteristics lines. 

Now, once again we see that this has nothing to do with the boundary conditions and in 

fact, this is the property of the basic solution itself. So, this is independent of the 

boundary conditions this fact is independent of boundary conditions independent of 

boundary conditions or whether that the flow flow is such that it is perturbation remain 

constant along Mach lines irrespective of whatever, body shape, we are considering in a 

supersonic flow. So, this is this property is contained within the specific solution, f equal 

to constant along x minus beta equal to beta y equal to constant. 



So, property of the solution itself property of the general solution, f equal to constant 

along x minus beta y equal to constant and similarly, similarly, we can see g equal to 

constant along x plus beta y equal to constant. 
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 As, we can see that with respect to any wall or any streamline. Now, these set of 

characteristics are as you can see inclined downstream and meaning that, they are 

originating from this wall they are originating from the wall and they carry the 

information from the wall to the field flow field, while the other set of characteristics. 

Which are inclined upstream, meaning that they bring in information from infinity and 

hence, they carry no perturbation. 

So, carry no perturbation this set originates at infinity and brings in perturbation to the 

wall. However since, there is no perturbation the perturbation is not created on the wall it 

at the infinity. So, these are carrying no perturbation, while this originates at the wall and 

carries perturbation to the field. So, this is the reason that for flow over the wall only the 

function f is important hence, g is not required for flow on the upper surface of the wall. 

However if, we consider the flow on the lower surface, then this is what is originating at 

the wall and carrying the perturbation to the field. While this then is originating at 

infinity and there is no perturbation. So, for the lower flow for flow on the lower surface 

g gives the solution. 
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Now, let us see that C p on the wall, the pressure coefficient on the wall 2 alpha h by 

beta cos alpha x which can be written as 2 by beta dy dx wall, and if you remember, this 

is the same pressure coefficient that, we obtained in case of weak wave theory or 

linearized shock expansion theory. So, we get the same result here also, one more thing 

that, this is now, anti phase to the wall out of phase with respect to the wall. Maxima are 

maxima and minima are shifted by a phase of pi by 2 with respect to the maxima and 

minima of the wall.  

So, we have pressure distribution antiphased pressure distribution anti symmetrical to the 

crests and troughs of the wall, ((no audio 27:33 to 28:30)) remember the pressure is these 

are of course normal reduction for the supersonic case however, this as ((no audio 28:42 

to 29:38)) and this of course, clearly, shows that for if the wall is symmetric. As, we have 

considered, there will be no lift in both the cases. However, in this case there will be drag 

force acting, while there is no drag force here. 
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Now the magnitude of the drag force per wavelength can be written as C D equal to 1 by 

l 0 to l this gives the component along the flow direction component of the pressure 

coefficient along the flow direction which is say C p sin theta is nearly equal to C p theta 

that is C p d by dx of course, this dy dx of wall.  

Now, as we have already seen that the C p is written as 2 by beta into dy dx. So, this 

becomes dy dx square dx and this, we can replace by a average or this average is defined. 

So, once again we have seen that this, there is a drag in viscid two dimensional 

supersonic flow, which is called the wave drag, because of the wave nature of the 

solution of supersonic flow again considering the range of validity. 
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As, before we can see since first of all we have considered the linearized supersonic flow 

or there is supersonic flows. Which can be linearized and this implies that, the coefficient 

of d 2 phi dx 2 on the left hand side the coefficient of d 2 phi dx 2 dx square on left hand 

side is much larger than coefficient of d 2 phi dx 2 on right hand side. ((no audio 34:43 

to 35:15)). 

Now, u by U infinity maximum as, we have already seen is alpha h by beta, ((no audio 

35:29 to 36:08)) which again gives and we see that, we have again obtain the same 

relation. As, we have seen in case of a subsonic flow, that the linearization can be used 

only if, this condition is satisfied and if not as this quantity moves towards one, the 

applicable validity becomes 4 and when this reaches very close to 1.This approximation 

cannot be used and this terms on the right hand side, cannot be neglected meaning this, 

suggest when the flow will become transonic. 
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Now, if we combining with the subsonic case; combining the result with subsonic case. 

We have, ((no audio 38:00 to 38:32)) outside this range linearization is possible, 

complete linearization is applicable outside the range and the flow is transonic within the 

range, and as we have mentioned earlier or as you can see that alpha h the parameter, 

alpha h can be related to the maximum slope of the body. ((no audio 39:47 to 40:18))  

So, we can replace this alpha h by the maximum slope, and this gives concise definition 

of transonic flow. So, we can see this is this gives us a definition of transonic flow, a 

theta is the slope of the body then, and this term is usually call the transonic parameter it 

is denoted by chi. 
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So, we see that whether a particular flow can be called transonic or not depends on the 

free stream mach number and particularly and 3 2 3 by 2 exponent for the factor 1 minus 

M infinity square the slope of the body, and also the specific heat ratio gamma that 

means, it we it depends on the gas itself. So, for a given body and given free stream 

Mach number the flow may not be transonic, if gamma is if gamma is such that this 

condition is not satisfied.  

We can also see that the small perturbation, also leads the small perturbation; also leads 

to the earlier assumptions that, and similar to subsonic case small disturbance 

approximation. If alpha h by root over M infinity square minus 1 is much less than 1, and 

alpha h root over M infinity square minus 1 h much less than 1. This also you can see as 

before using the same approach that is u by U infinity and v by b b infinity M v by U 

infinity of much smaller than 1 to get this relation and the higher order term in the wall 

boundary conditions is negligible, if this is satisfied. So, hence these are the requirement 

for the small disturbance approximation to be valid. 
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Now, with this we can find what is a supersonic thin airfoil theory, this will give us 

supersonic thin airfoil theory ((no audio 44:42 to 45:22)) from the solution, our wavy 

will we, have seen that disturbance propagated along downstream running Mach lines, 

only disturbances propagate along downstream running Mach lines only hence, the 

solution for the solution for the upper surface, phi x y equal to function of x minus beta y 

for y greater than 0, for lower surface. Now, the specific form of f and g can only be 

obtained by satisfying the wall boundary condition. 
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And boundary condition on upper surface gives us U infinity dy dx on the upper surface 

is again approximated to d phi dy at y equal to 0, and which is d phi dy is minus beta a 

prime x or f prime x is minus U infinity by beta dy dx on the upper surface. Similarly, on 

the lower surface and once, this must be remembered that beta in this case is root over M 

infinity square minus 1. These are also the velocity component on the wall that is u on 

upper wall. 
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And similarly, this is U on lower wall hence the pressure coefficient can be written as 

minus 2 by, U infinity f prime x on the upper surface and minus 2 by U infinity g prime x 

on the lower surface.  

Now, substituting here a prime and g prime, this is this gives C p on the upper surface as 

2 by and on the lower surface. So, see the pressure coefficient on the airfoil surface is 

quite easily obtained from the solution of the wave shift wall or using the linearized 

problem of course, and we can see that, this leads to a local inclination theory, that C p at 

any point on the surface is simply, related to it is slope surface slope at that point. So, C 

p related to local surface slope; C p at any point on the surface of their foil. Simply, 

depends on the slope at that point and of course, the free stream mach number within the 

frame work of thin airfoil or linearize theory.  
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So, to summarize what, we have done today is solved linearized supersonic flow first 

wave view shift wall, and the most important thing that, we have observed that there is 

no exponential attenuation factor in case of a supersonic flow, that is the perturbation in 

a supersonic flow extends to far away theoretically. It infinity and the perturbation 

remain constant along the characteristic lines also, we have seen that that the 

disturbances propagate, along only downstream running Mach lines hence, solution of 

the solution for the over the upon however the flow the only function equal in the 

functionate and surface the solution that is required is the function g, considering the 

validity of this linearized approximation.  

We have come to an explicit definition of transonic flow and we have defined a transonic 

parameter. Which, we have seen the depends the free stream mach number in particular 

to the prandtl glauert factor, we rise to the exponent 3 by 2, it also depends on the slope 

of the geometry, but surprisingly. It depends on the gas itself, whether a flow at a 

particular mach number, over a particular geometry is transonic or not depends also on 

the gas itself also, we have seen that as before, we have found a drag force acting, even 

in two dimensional on in viscid flow over over a body. 

So, we have confirm the fact again that, if Supersonic flow. There is a drag even, if the 

flow is in viscid two dimensional the drag, which we called wave drag and in this case 

also every valuated the wave drag then finally, we have explain extend this solution of 



flow over a wavy wall to flow over a thin airfoil and we have developed what is known 

as the supersonic thin airfoil theory. Where, we have seen that the pressure coefficient at 

any point on the airfoil surface depends only on the local slope and which also depends 

on the free stream Mach number.  

So, with this we conclude our definition that, this thin airfoil theory within the 

framework of small perturbation theory leads, us to a very useful, but very simple result 

for flow past on a foil and of course. As you can see that this solution will, we also 

applicable two or three dimensional geometry except near the t or the effect of three 

dimensionality will come in. 


