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Linearized Problems – Forces on Slender Bodies 

 

We have discussed the solution of axially symmetric flow over slender bodies of 

revolution and in that context we consider an example flow over a cone and for which 

we got the complete solution and for any cone within the framework of small 

perturbation theory. And then approximated that solution for cylinder bodies, however 

instead of getting solution for a particular problem and approximating it for slender 

bodies, it is possible to introduce the approximation in the solution process itself and get 

a complete solution for any arbitrary slender bodies. 

And we will use that method to find the solution about any arbitrary profile in first 

axially symmetric flow and then possibly in a symmetric flow with cross flow, however 

you know that cross flow solution can straightaway be obtained from the axially 

symmetric solution and we will use this approach to evaluate the forces that are acting on 

in cylinder body. So, first of all let us consider the forces that are acting on a axially 

symmetric flow or bodies immerged in a axially symmetric flow. 
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So, forces acting on slender bodies of arbitrary profile first, let us consider axially 

symmetric flow (No audio from 02:42 to 03:06), assume this body to be axially 

symmetric and the flow is along the axis. Now if we consider any small axial section 

over which the radius or you can say the cross-sectional area is increasing slightly, then 

we can see that the pressure that is acting on this strap where we have m infinity is a free 

stream speed when the free stream pressure is p infinity. 

And on this section the pressure is acting p and we have seen from the earlier solution 

that the pressure varies, gradually over this length in an axially symmetric flow over a 

cone, which we can say may be the general result for a general profile. Now we can see 

that the pressure distribution is symmetric about the upper half and lower half that is 

pressure is pressure has a top and bottom symmetry, since pressure has top and bottom 

symmetry since the pressure has top and bottom symmetry consequently. 

There is no lift force (No audio from 04:57 to 05:17) consequently there will be no lift 

force, however we see clearly that the pressure is not symmetric about front and rear but, 

drag exists as there is no symmetry between front and rear. 

And so in this case the force evaluation of the force is basically determination of this 

drag force that acts on this body and we will now try to evaluate this drag force (( )) the 

general solution for this problem, as we have already evaluated (No audio from 06:45 to 

06:58) 0 to x minus beta r function of xi d xi the source strength distribution divided by 



the kernel square x minus xi square minus beta square minus r square where beta square 

is M infinity square minus 1. 

Now, if we recall that we introduced a substitution and simplified this integration earlier 

because this integration has a singularity at the upper limit it is an improper integral and 

use of that substitution make it possible to evaluate this integration. However for any 

arbitrary slender bodies in this context, we do not make use of that substitution to 

evaluate this integral rather; we split this integral in two part we split this integral in 2 

part phi which are omitting this functional representation x r all the time for convenience 

(No audio from 08:25 to 08:35) is that means the upper limit. 

We make it x minus beta r minus epsilon, where epsilon is a small number (No audio 

from 08:42 to 09:05) minus (No audio from 09:07 to 09:30). This is just to avoid the 

singularity at the upper limit, we have reduced the upper limit by a small number epsilon 

a small number which we have you introduced, so that there is no singularity in this 

integrant, however in this part the singularity is still there. 

Now, since this integrand is not singular, we can expand it in the power series of beta 

square r square; so with this the integrand is not singular not singular in it is domain (No 

audio from 10:35 to 10:50) and in powers of beta square r square (No audio from 10:54 

to 11:08). 
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Now, if we integrate this function, that is 1 by root over x minus xi square minus beta 

square r square; that is x minus xi square minus beta square r square to the power minus 

half this can be expanded as a binomial series. And assuming slender cone that higher 

power of beta square r square can be neglected, this gives 1 by x minus xi plus half beta 

square r square into 1 by x minus xi to the power 3. 

Now, then this first integral can be integrated term by term that is (No audio from 12:41 

to 12:59) we had the (No audio from 13:09 to 13:59) and this becomes, then f 0 log x 

minus f x log epsilon plus (No audio from 14:25 to 14:45) f prime xi log x minus xi d xi 

plus epsilon f prime x log epsilon this is where the case. When beta r approaches 0 that is 

for slender bodies; so this where, we introduce slender body approximation (No audio 

from 15:33 to 15:47). 

For the second integral for the second integral we introduce same substitution, which we 

introduced earlier that is (No audio from 15:58 to 16:10) xi equal to x minus beta r cos 

hyperbolic sigma. So, for second integral (No audio from 16:16 to 16:27) use xi x minus 

beta r cos hyperbolic sigma as before and this gives x minus beta r minus epsilon to x 

minus beta r by f xi (No audio from 17:12 to 17:35) cos hyperbolic inverse beta r plus 

epsilon by beta r equal to function of x minus beta r cos hyperbolic sigma d sigma. 

This integration of course, we carried put earlier, so we can use those result and this 

gives f x cos hyperbolic inverse beta r plus epsilon by beta r d sigma minus beta r into 0 



to cos hyperbolic inverse beta r plus epsilon by beta r into f prime x cos hyperbolic sigma 

d sigma plus higher order terms in beta r (No audio from 19:05 to 19:17) assuming beta r 

0; that is for slender body approximation, this gives (No audio from 19:25 to 19:35) log 

by 2 beta r plus f x log epsilon minus epsilon f prime x. 
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Now, if we combine this two if we combine this two we get the potential, so (No audio 

from 20:07 to 20:19)  two; we have phi x r equal to minus see, all this terms in both the 

integration what we have carried will become negative; because, in the definition of phi 

the integral r preceded by a negative sign. So, this makes minus f x log 2 by beta r minus 

0 to x f prime xi log x minus xi d xi (No audio from 21:15 to 21:45) and see that the 

terms containing epsilon can be made to vanish if epsilon is approaching to 0. 
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Now, if we consider a pointed body (No audio from 21:58 to 22:18) made to 0 

considering pointed nodes and this eliminates the f 0 term present in the first integration 

the term f 0 log x present in the first integration is made to 0 by assuming that the body 

has a pointed nodes; so that f 0 is 0 and this then is the, so what we get is the potential for 

slender bodies with pointed nodes and here it is for any general arbitrary slender bodies. 

Now, we know that this potential function must satisfy the boundary condition, now first 

of all let us evaluate, what is v the radial component of velocity is obtained as d phi d r 

and this becomes only the first term here is a function of r. So, this can be easily 

differentiated and the result is f x by r or f x equal to v r, now let us say on the body 

surface r equal to r and this then gives v on the body into r. 
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So, application of boundary condition, then gives (No audio from 25:22 to 25:42) 

condition gives f x equal to v body which you know is u infinity r d r d x, v body is U 

infinity d r d x into r (No audio from 26:06 to 26:26). This is what the approximate flow 

tangency condition, which we have written many times; so, this gives the distribution of 

source strength for any arbitrary profile and assuming that cross-sectional radius (No 

audio from 26:51 to 27:04) cross-sectional area A is pi r square. 

So, introducing this f x is u infinity by 2 pi d A d x that is for a body in axially symmetric 

flow for a slender body in axially symmetric flow, the source strength distribution on the 

axis is simply given by the rate of area change of cross-sectional area along the axis. So, 

what we get in source strength is proportional to local rate of change of cross-sectional 

area of the body meaning that, the portion of the body which are far away from the cross 

section or the corresponding concerned cross section has no influence on the local 

condition. 

That is flow at any part of the slender body, simply depends on the local cross section 

and it is change however and the cross section which are faraway or the part of the body, 

that is far away from this station, do not have influence on the local flow condition. In 

terms of perturbation you can see that, the rate at which the flow is perturbed due to 

pushing of the flow by the body away from it depends entirely on the local rate of change 

in area (No audio from 29:34 to 29:44). 



Now, with this we can complete the solution for complete the solution for the potential 

over a cylinder body of revolution with close nodes and arbitrarily smooth meridional 

section is minus U infinity by 2 pi (No audio from 30:17 to 30:28). The rate of change of 

area will denote by A prime into log 2 by beta r minus sorry u infinity by 2 pi A double 

prime xi log of x minus xi d xi integrated over 0 to x. So, this is the potential for any 

cylinder body of revolution with close nodes and arbitrarily smooths meridional section 

in axial flow (No audio from 31:17 to 31:29). 
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So, this is the potential for (No audio from 31:31 to 31:48) cylinder body of revolution 

with pointed node and arbitrary profile in asymmetric flow in asymmetric supersonic 

flow within the framework of small perturbation theory.  Now the velocity components 

can be evaluated that is U by U infinity by differentiating that expression for phi with x, 

this gives u by u infinity is minus A double prime by 2 pi log of 2 by beta r minus 1 by 2 

pi d d x of (No audio from 33:16 to 33:31) and v by U infinity is (( )) d pi d r which gives 

A prime by 2 pi r which becomes r by r d r d x. 

Now, c p of course we can get the pressure coefficient is minus 2 u by U infinity minus v 

square by u infinity square. So, this gives A double prime by pi log of 2 by beta r plus 1 

by pi d d x of this integration (No audio from 34:37 to 34:48) sorry log x minus xi d xi 

minus. There is c p on the body surface c p on body surface, so we get the pressure 



coefficient on any cylinder body of revolution, we pointed node in axially symmetric 

supersonic flow. 
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Now, let us come back to this pressure distribution once again (No audio from 35:33 to 

36:13), we will consider a small section of length d x and the free stream as we have 

mentioned M infinity greater than the pressure here is p infinity. The pressure on the 

surface is p but, the back the pressure will of course, be different and will call that base 

pressure. Now, the pressure coefficient that we have obtained corresponds to this 

pressure. 

However, as far as the back pressure is concerned, we cannot evaluate this back pressure 

based on these in viscid flow theory; because flow behind this body with a blunt base is 

always highly viscous even may be turbulent and cannot be evaluated by any in this in 

viscid flow theory. So, this p b can only be obtained using either a full viscous flow 

theory or by experiment, so cannot be obtained from any in viscid flow theory; we need 

either a complete viscous flow theory, perhaps including turbulence and or experimental 

determination of the base pressure. 

Now, looking to this area (No audio from 38:25 to 38:43), let say that in this side the 

radius of the cross section is r, then on this pass the radius of the cross section is R plus d 

R d x into delta x and projecting it on a plane. We get the projected area looks like two 

concentric circle (No audio from 39:17 to 39:40) projected area is basically two 



concentric circle (No audio from 39:43 to 40:04). So, this projected area is becoming 2 pi 

R d R and of course, it is a function of x it depends on x, now the pressure reacts on this 

projected area and consequently that of course, the axial force this implies the axial force 

which itself is drag. 

In this case, if we consider the total length of the body is L then, minus p B A B where A 

B is the area at base (No audio from 41:22 to 41:38) A B is base area. 
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Now, this can be arranged in this fashion 0 to L p minus p infinity d a plus p infinity p B 

into A B, then if we divide this by that is you are defining drag coefficient based on the 

base area; not on the plan form area as usually done in aerodynamics of wings or 

incompressible flow aerodynamics that that is always based on plan form area but, in this 

case we can see, that that drag coefficient is based on this area. 

Now, this gives when divide by half rho infinity infinity square this becomes the pressure 

coefficient, so 0 to L C p d A plus C p B; now this this can only be obtained from 

viscous wave solution or or from experiment, this flow is cannot be obtained from 

inviscid solution. So, we can over this part as we have already obtained can be obtained 

by substituting that part and let us called that C d 1 plus C p B and this C d 1, then can be 

written as (No audio from 44:55 to 45:27), this we can write that A B into C d 1 is 0 to L 

C p A prime which is of course, of function of x into this. 
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And then, we substitute C p here from the earlier expression that we had to give 1 by pi 0 

to L a prime x A double prime x log of 2 by beta R, R is also a function of x minus 0 to L 

(No audio from 46:23 to 46:42) plus 1 by pi 0 to L A prime x d d x of A double prime xi 

log of x minus xi d xi. You may recall that this first and third term here, has come from 

the axial velocity component while this second term here, we have come from the radial 

velocity component v square by infinity square in c p. Now, this for convenience, we 

will write as I 1 minus I 2 plus I 3 some of 3 separate integration. 

Now, the first term can be written as the term can be written as minus 1 by 2 pi 0 to L we 

inverse this parameter of logarithm to be at the negative sign log beta. This must be beta 

R by 2 into d which on integration by parts gives us minus 1 by 2 pi square log of beta R 

by 2 0 to L plus 0 to L A prime d R d x square which, this term we can see cancels with 

the second term I 2. So, this I 1 minus I 2 becomes only this term (No audio from 49:52 

to 50:06). 
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Minus 1 by 2 pi A prime square log of beta R by 2 0 to L (No audio from 50:27 to 

50:41), now since we are considering bodies with pointed node, so this becomes at 0 the 

it become 0, so it remains only the (( )). So, this becomes A prime at L square by 2 pi log 

beta r by 2 that is (No audio from 51:31 to 51:52), where r be the radius at the base. The 

third integration as it happens is 1 by pi A prime x 0 to x A double prime xi log x minus 

xi d xi 0 L minus 1 by pi 0 to L A double prime x 0 to x A double prime xi log x minus 

xi d xi d x. 

And this becomes 1 by pi A prime L 0 to L A double prime xi, where we have set the 

limit L for the length of the body and at 0, we have use the properties of pointed body 

minus 1 by pi 0 to L 0 to x A double prime x A double prime xi log x minus xi d is xi d 

x. 
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Now, combining then we get finally, when all three are combined this we have A by 2 pi 

log 2 by beta R B plus a prime at L by pi 0 to L A double prime xi log of L minus xi (No 

audio from 54:41 to 55:04). So, this is the expression for the drag that comes in 

asymmetric flow over a cylinder body with pointed node in supersonic flow due to the 

pressure distribution on the surface of the body that is excluding the base pressure drag. 

Now, you can see here that, these first two terms will become 0 if a prime L that is the 

rate of change of cross-sectional area at the base is 0, first two terms are 0, if A prime L 

equal to 0. Now what is a prime at 2 pi R R prime this then implies that (No audio from 

56:14 to 56:46) or R L equal to 0 (No audio from 56:50 to 57:07) pointed base; say the 

base of the body is also pointed then the first two terms also becomes, 0 or if R prime L 

equal to 0 then body slope at base is 0. 

So, if the base is also pointed or the body slope at the base is 0, then the drag is given by 

the last term (No audio from 57:48 to 58:06) (Refer Slide Time: 57:58) 0 to l 0 to x (No 

audio from 58:08 to 58:28) which, happens to be that integration over a triangular area 

bounded by xi equal to 0 xi equal to x and xi equal to well. 

So, we have obtained the drag coefficient due to the surface pressure distribution for 

body of revolution with of cylinder cross section with arbitrarily smooth profile and at 

pointed nodes. Subsequently, I have seen that, if the base is also pointed, then the drag 



term become simpler and similarly, if the slope of the body at the base is 0 then also we 

have a simpler expression for the drag coefficient. 
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Now, this simply implies that drag coefficient will not change if the base cross-sectional 

area is not change that means, if the base is extended or rather if there is (( )) and after 

subsequently a constant area part of the cylinder body. Then, that uniform part of the 

body does not contribute to the drag coefficient, that is if we have say, think about a cone 

cylinder (Refer Slide Time: 1:00:09) (No audio from 1:00:09 to 1:00:24). So, this part 

where over which there is no change in cross-sectional area does not contribute to the 

drag coefficient (No audio from 1:00:30 to 1:00:52) and hence drag. 


