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One-dimensional gas dynamics 

 

We will discuss one-dimensional gas dynamics today. This one-dimensional gas 

dynamics or one-dimensional compressible flow can be used to analyze the flow through 

tube, flow through channel forever. The geometry can be expressed by the variation of 

cross section along its axis. So, this can also describe the flow through a wind tunnel, 

flow through nozzle, flow through various other ducts and where the flow properties at 

each cross section are considered as uniform. That is, the pressure density temperature 

velocity at any actual location over the entire cross section is given as a function of the 

actual coordinate x. The flow quantities of course can be time dependent. We do not 

exclude the possibility of unsteady or time dependent flow and the results that you obtain 

they can be applied to flow where there are non uniform conditions at certain cross 

sections, provided that there are some conditions. Cross sections where the flow 

properties are uniform, where the properties are non uniform at any particular stations or 

at particular cross sections, these results applied to certain average quantities. And, even 

though these consideration is for one-dimensional flow, the result that we obtain can 

even be used for individual stream tubes in a three dimensional flow. So, the results are 

quite general. 
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Now, if the flow were incompressible then, the complete one-dimensional flow results or 

obtained from the kinematic relationship where the flow velocity is inversely 

proportional to the cross sectional area a. That is, an incompressible flow in 

incompressible flow the complete relationship is obtained from this relation or A u equal 

to constant or rather that the volume flow rate at any cross section each constant and then 

the pressure can be obtained from the incompressible Bernoulli’s equation that p plus 

half over u v square at any cross section is constant and we get the velocity field as well 

as the pressure field the only 2 unknown in an incompressible flow. However, in a 

compressible flow the relationship are little more complex and due to the variation of 

density along the axis the relationship changes. So, these are not true incompressible 

flow. 

Now, to obtain these flow solutions in incompressible flow, we will first derive the basic 

conservation laws for compressible flow which includes the mass conservation or the 

continuity equation the momentum equations or the Euler’s equation for income in visit 

flow and the energy equation. Now, of course, all these equations can be obtained from 

the general mass conservation or momentum conservation or energy conservation law 

that are derived in basic courses in feed mechanics. However, in this case we will derive 

those equations from the first principles once again applicable for one-dimensional flow. 



Let us say that we have a tube which we have, a tube with cross section is varying along 

its axis and you consider this is the x direction. Let us consider 2 sections where the 

cross sectional area are A 1 and A 2 and the flow properties that is, density velocity are 

given as rho 1, u 1 and rho 2, u 2. Let this length be delta x; then, the mass flux that 

enters through the cross section at A 1 is given by rho 1 u 1 A 1 and that at cross section 

2 this will be rho 1 u 1 A 1 plus at A 1 rho 1 u 1 A 1 at 2 it is rho 1 u 1 A 1 plus rate of 

change of this mass flux over the length into the length and this is equal to the mass flux 

at station 2 rho 2 u 2 A 2. 

So, the rate of change of mass flow over this 2 sections is given as minus d d x of rho u 

A sorry, not rho 1 u 1 rho u A into delta x. Now, this rate of change of mass within this 

control volume that is enclosed between these 2 cross section A 1 and a 2 and by the wall 

of this tubes is d d t of d d t of rho u sorry, rho a delta x. That is the rate of change of 

mass within the control volume bounded by the cross section A 1 A 2 and the side walls. 
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So, what in a sense we get is that, d d t of rho A delta x is minus d d x of rho u A delta x 

or d d t of rho A plus d d x of rho u A integer this is the mass conversation or continuity 

equation for one-dimensional compressible flow through a tube or duct which cross 

sectional area is A. if the flow was steady that is that provide you do not change with 

time then, we get d d x of rho u A equal to 0 for steady flow which can be written as rho 

1 u 1 A 1 equal to rho 2 u 2 A 2. So, this also can be taken as the continuity or mass 

conservation equation for steady one-dimensional compressible flow that is, the mass 

flow that at any cross section area remain constant. Whatever mass is crossing a 

particular cross section that must pass through all other stations and if the cross sectional 

area remains constant then, this equation changes to rho u equal to constant if A is 

constant. 
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Now, we will consider the Euler’s equations or momentum equation for momentum 

conservation equation for in viscid compressible flow. The one-dimensional form of the 

Euler’s equation or the momentum conservation equation for compressible flow can be 

written as rho d u d t this equation can be easily obtained from by substituting y and by 

dropping out the y and z derivative terms from the three dimensional or the general 

Euler’s equation. For in viscid flow, if the flow is steady then the first term that is the d u 

d t becomes 0 and the equation can be written for steady flow the partial derivatives in 

this case changes to ordinary derivatives since, the properties p and u are now just 

function of x only and not of t. 
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This equation can be integrated to the form half u square plus d p by rho equal to 

constant the integration can be completed if a relationship between pressure and density 

is known this Euler’s equation can also be converted with the help of the continuity 

equation to a more useful form which can be obtained in the following manner let us 

consider the steady flow Euler’s equation and lets multiply it by rho A. So, steady rho A 

multiplied by steady Euler’s equation and the result is the result is rho A u or let us say 

multiply rho A to unsteady Euler’s equation. So, that we get rho A d u d t plus rho A c d 

u d x we also multiply the continuity equation by u which gives u into continuity that 

gives us u d d t of rho A if these 2 are added we have d d t of rho u A plus d d x of rho u 

square A ((no audio 16:03 to 17:25)) the equation can further be change to by the right 

changing the right hand side to a different form as d d t of rho u A plus d d x of rho u 

square A to if this is this equation is integrated between 2 stations 1 and 2 that is let us 

say between 2 stations 1 and 2 the result becomes ((no audio 18:31 to 19:26)). This first 

integral is the rate of change of momentum of the fluid enclosed between station 1 and 

station 2 and the second term is the momentum flux in the space through the sections 1 

and 2 and the right hand side implies the force that is acting in the x direction due to the 

pressure difference at the 2 end station 1 and 2 and also on the wall. 

The last term defining out, defining an average pressure over the region the last term can 

be written as if the flow is steady then the first term vanishes and also, if the duct is of 



constant area. So, for a steady flow in a constant area duct the equation becomes rho 2 u 

2 square minus rho 1 u 1 square equal to p 1 minus p 2 or we have. 

Now, this integral form of this momentum equation is more general than the differential 

form because this integral form is applicable if and when there are dissipative processes 

within the control process within the control volume provided that the reference station 1 

and 2 are in equilibrium states. So, if there are non equilibrium region between one, the 

station 1 and 2 but, the station 1 and 2 themselves are in equilibrium the integral form of 

the equation is applicable; however, in that situation the differential form cannot be 

applied. 
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We will now consider the energy equation for one-dimensional compressible flow 

energy equation for the energy equation for one-dimensional compressible flow now for 

a fluid flow problem as we have discussed earlier the basic thermodynamic quantity is a 

enthalpy instead of the internal energy because of the presence of the flow work now let 

us consider a definite question of the flowing fluid which is enclosed between station 1 

and 2 station 1 and 2 and we call this is the system. Now, consider a small time interval 

in which the fluid contained between these 2 station 1 and 2 is displaced 2 another region 

bounded by is in 1 prime and 2 prime and let us say that during this time period a 



quantity of heat is added if we denote by q. Now, if we apply first law of 

thermodynamics then we get that the heat added to the system q plus work done on the 

system is the gain in energy or increase in energy or the system. 
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Now, let us estimate the work done on the system let us assume that at station 1 the 

volume displaced is the specific volume v 1 corresponding to a unit mass then the if the 

condition is steady then the displacement at 2 is also for unit mass of with specific 

volume now v 2. So, the work done on the system is work done on the system is simply 

given by p 1 v minus p 2 v 2 the increasing energy of the system is energy at station 2 

minus energy at station 1 is energy at station 2 is the internal energy plus the kinetic 



energy. So, this is the energy at station 2 minus the energy at station 1 that is e 1 plus 

half u 1 square. So, for a steady flow we can now write the energy equation we have q 

plus ((no audio 27:03 to 27:35)). So, this is the energy equation for steady flow through a 

duct we can further rewrite this equation in the form using the definition of energy we 

can write q equal to h 2 or h 2 is p 2 plus p 2 v 2 minus h 1 plus the difference in kinetic 

energy if the flow are adiabatic then q is 0. That is, no heat is added to the system nor 

taken away from the system that is some of the enthalpy and the kinetic energy remain 

constant through a duct that is in a adiabatic flow the energy equation simply gives that 

the sum of enthalpy plus kinetic energy remain constant and this gives rise to the 

definition of a new quantity known as the stagnation enthalpy, or stagnation enthalpy or 

reservoir enthalpy or reservoir enthalpy that is the enthalpy when the flow velocity of an 

adiabatic flow becomes 0. That is, if the flow is brought to rest adiabatically then the 

total energy of the system or total enthalpy of the system is known as stagnation enthalpy 

or reservoir enthalpy. 

This is of course, the integral form of the energy equation and as before this integral 

form is valid if there is some non equilibrium or non uniform region between station 1 

and station 2 that is even if there is some sort of discuss stresses heat transfer then also 

the equation remain valid provided at station 1 and station 2 both of them represent 

equilibrium steps the equation can also be written in the differential form as d h plus u d 

u equal to 0. This is the differential form of the adiabatic flow energy equation and if the 

gas where a perfect thermally perfect gas then, these equations can also be written as C p 

d t plus p u d u equal to 0. 
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The equation can also be integrated if this specific heat at constant pressure is known as 

a function of temperature. So, assuming that the gas is calorically perfect where C p is 

independent of temperature. So, for a calorically perfect gas this can also be integrated 

and again if u equal to and the fluid is uniform similar to stagnation enthalpy we get 

stagnation temperature or reservoir temperature. So, reservoir temperature or stagnation 

temperature as well as reservoir enthalpy or stagnation enthalpy can also be called the 

enthalpy or temperature of a reservoir where the flow velocity is practically 0 and in 

which no heat transfer is taking place. 

Now, if there are no heat edition between 2 reservoirs then the enthalpy of both the 

reservoir is same let us say is denoted as eight 0 and considering a calorically or 

thermally perfect gas the temperature is also that stagnation temperature or reservoir 

temperature and for 2 reservoirs flow between 2 reservoirs the 2 reservoirs we do you as 

say reservoirs A and reservoirs B and since the heat there is no heat is added then the 

enthalpy of reservoir A is same as the enthalpy of stagnation enthalpy of the reservoir B 

and similarly the stagnation temperature of A is same as the stagnation temperature of A. 

However, from second law of thermodynamics the entropy of the downstream reservoir 

that is s B it can either be greater than or A. 
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Now, for a perfect gas we have already seen that the difference in entropy is given as 

((no audio 36:19 to 36:49)) and which simply gives that p 0 that is the downstream 

pressure can either be downstream pressure should be or must be less than the upstream 

pressure. This of course, holds for in a gas even though it is derived for a perfect gas,, 

but the result is valid for all type of gases that is an increase in entropy at constant 

stagnation enthalpy will be associated with a degrees of stagnation pressure. 

Now, since the increase of entropy with associated decrease of stagnation pressure that 

represents an irreversible process where entropy is produced in the flow between the 2 

reservoirs and the flow is not equilibrium throughout. However, when the flow is 



equilibrium throughout only then there will be no change in entropy and the entropy will 

remain same for both the reservoirs and the flow will be termed as isentropic and only in 

such isentropic processes the total pressure also remain constant. So, the reservoir 

conditions or stagnation conditions are also called total conditions and these terms are 

used to define conditions at any point in the flow. So, the total conditions for enthalpy 

and temperature at any point in the flow can be attained if the flow is brought to rest 

adiabatically. However, the condition for pressure can only be at end if the flow is 

brought to rest at brought to rest isentropically for stagnation condition to exist. It is not 

enough that the flow is brought to rest. It must be remembered that the flow must be 

brought to rest adiabatically for enthalpy and temperature. But, isentropically for 

pressure that is the equilibrium condition must exist while the flow is brought to rest or 

the flow is imagined to be brought to rest the equilibrium condition must always be 

maintained. 

Now, since the imaginary local stagnation process is isentropic the total entropy at any 

point is by definition equal to the local static entropy that is stagnation entropy is same as 

the static entropy plus stagnation entropy is same as total entropy and in terms of total 

pressure the difference in entropy can be written as, what we see from these equations? 

That a flow which is adiabatic and is in equilibrium throughout, is also isentropic. So, for 

a conducting adiabatic non conducting flow the energy equation for adiabatic non 

conducting flow, we have the energy equation d h plus u d u equal to 0 all along the 

flow. Similarly, we have seen that the in the absence of viscous or fiction forces the 

Euler’s equation u d u plus is applicable everywhere. 
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Now, combining these two equations what we get is combining the 2 d h is for is 

applicable for adiabatic non conducting in viscid flow that is this equation is applicable 

for adiabatic non conducting in viscid flow everywhere and using second law of 

thermodynamics this is and this is equal to T d s . So, you see that for adiabatic non 

conducting in viscid flow T d s equal to 0 ((no audio 44:47 to 45:35)). That is, you find 

that these flows are isentropic that is adiabatic non conducting in viscid flows are by 

definition isentropic flow. Using the perfect gas relationship that is using the perfect gas 

relationship this relation d h minus d p by rho equal to 0 will give us p by p 0 rho by rho 

0 to the power in these relations or can also be thought of an alternative form of equation 

of state for a perfect gas in isentropic flow with the basic equations for one-dimensional 

compressible flow. That is namely, the mass conservation or continuity equation the 

Euler and momentum equation and the energy equation and also some associated 

relation. 
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We will now pass on to some new other concepts and new definitions and first of all we 

will define to a very important quantity in compressible flows those are speed of sound 

and Mach number now speed of sound is a speed at which a small disturbances or waves 

propagate through a compressible fluid or in general in any elastic medium the speed at 

which the small disturbances or waves propagate through a elastic medium which in this 

case is the compressible fluid. So, it is related to the compressibility of the fluid and 

mathematically it is defined as the speed of square of speed of sound is d p d rho. At 

constant entropy that is 1 by rho tau s for tau s is the isentropic compressibility, the 



isentropic compressibility or can also be written as k s by rho or k s is isentropic bulk 

modulus. 

The disturbance produces temperature and velocity gradients within the fluid; however, 

these gradients are. So, small that the fluid particle undergo the nearly isentropic process 

and using the perfect gas relationship where for a perfect gas in isentropic process as we 

have all seen that p is proportional to rho to the power gamma and this results now in a 

flowing fluid the pressure density and temperature where is continuously and fluid with 

the speed of sound and this speed of sound is considered as a significant measure the 

effect of compressibility and a dimensionless parameter is introduced to measure this 

effect of compressibility and this dimensionless parameter which is nothing but the ratio 

of flow speed by the speed of sound is called the Mach number. Since both the flow 

velocity and the speed of sound changes from point to point, the Mach number also 

changes from point to point. In a flow in an adiabatic flow and increase in speed of 

sound always corresponds to an increase in Mach number and the flow is divided into 

different regime flow is divided into different regime based on the value of the Mach 

number local Mach number. 
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When the Mach number is less than 1, the flow is called subsonic and a flow where both 

the situations prevail. That is, there are some part of the flow where Mach number is less 

than 1 and some part of the flow where the Mach number is greater than 1. Then, the 



flow is called as transonic flow that is a transonic flow ((no audio 53:50 to 54:47)). That 

is, in a flow where both that is in regimes subsonic and supersonic regimes are present 

simultaneously that is in some part the flow is subsonic in some part of the flow is 

supersonic then the flow is called transonic. So, we have discussed the one-dimensional 

flow and the basic governing equations of one-dimensional compressible flow; that is 

namely, the mass conservation or continuity equation the Euler’s equation and the 

momentum equation and the energy equation from there we have seen what are 

isentropic flows. And, what happens to the equation of state in isentropic flows? We 

have also defined stagnation properties or stagnation quantities both total temperature 

and total pressure and finally, we have defined what is Mach number and the how based 

on Mach number based on the value of the Mach number the flow regimes are 

categorized. 


