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So, continuing our discussion on flow through a uniform duct we have seen that the flow 

velocity at the 2 stations 1 and 2, satisfy the relationship u 1 u 2; a, a star square or which 

can be written as M 1 star equal to 1 by M 2 star. That is, the speed ratio at the 2 stations 

satisfy this reciprocal relationship and which clearly shows that if M 1 star is greater than 

1 then, M 2 star will be less than 1 and if M 1 star is less than 1 M 2 star will be greater 

than 1 and vice versa. We have already seen that M 1 star become less than 1 when the 

flow is subsonic that is when M 1 is less than 1. 

(Refer Slide Time: 00:33) 

 

So, what we can see from here that when the flow is subsonic at station 1, the flow is 

likely to be supersonic at station 2. Similarly, if the flow is supersonic at station 1 it will 

be subsonic at station 2. However, there is nothing in this relation that excludes this one 

of these possibilities. However, as I mentioned that based on physical ground that if there 



is some sort of non equilibrium region between station 1 and station 2 where the viscous 

effects or the heat transfer is present then, through this dissipative processes acceleration 

flow is physically not possible and the jump from subsonic to supersonic is most 

probably will not occur in a real flow. However, we will later on show it using second 

law of thermodynamics that the deceleration from subsonic, supersonic to subsonic flow 

is physically possible. However, the alternative subsonic to supersonic acceleration 

through this jump will not be possible using the relationship between the speed ratio and 

the local Mach number which you have already derived and is given as M star square is 

gamma plus 1 M square by 2 plus gamma minus 1 M square. So, substitute substituting 

this speed ratio at station 1 and station 2 in terms of the Mach number at station 1 and 

station 2 we get the relationship as gamma plus 1 into square by 2 plus gamma minus 1 

which can be written in the form 1 plus gamma minus 1 by 2 M 1 square by gamma M 1 

square minus gamma minus 1 by 2 that is the Mach number at station 2 is simply a 

function of Mach number at the station 1 and of course, from the properties of the gas 

that is we can write that M 2 is simply a function of Mach number and gamma you can 

see here that if M 1 is 1 then, M 2 is also 1. 
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However, if M 1 is greater than 1 this shows if M 1 equal to 1 then, M 2 is also 1 if M 1 

is greater than 1 then, M 2 is less than 1 and similarly M 1 is less than 1 M 2 is greater 

than 1 which of course, we will see later on that will not be possible ((no audio 06:04 to 

06:37)) whether you see that as M 1 approaches infinity; a very large value that is M 1 



approaches infinity then, which is simply gamma minus 1 by 2 gamma and thus M 2 

reaches point 3 7 8 if gamma is 1 point 4. 

The velocity ratio between station 1 and station 2 can also similarly be obtained as u 1 by 

u 2 as u 1 square by u 1 u 2 that is u 1 square by a star square that is ((no audio 08:11 to 

08:43)) within the continuity equation for the present problem we all can also see that 

rho 2 by rho 1 is u 1 by u 2 and again can be written as gamma plus 1 M 1 square by 2 

plus gamma minus 1 M 1 square the pressure difference between these 2 stations can be 

obtained from the continuous momentum equations written in the form p 2 minus p 1 

equal to rho 1 u 1 square minus rho 2 u 2 square which can be written as rho 1 u 1 into u 

1 minus u 2 where rho 2 u 2 square is written as rho 2 u 2 which is equal to rho 1 u 1 that 

is since rho 2 u 2 square is rho 2 u 2 into u 2 which is rho 1 u 1 u 2. 
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Hence, we get the pressure rise p 2 minus p 1 by p 1 as rho 1 u 1 square by p 1 into 1 

minus u 2 by u 1 then, using the isentropic relation p 1 by rho 1 we can write this to be 2 

gamma by gamma plus 1 ((no audio 11:30 to 12:06)) the above velocity ratio as you 

obtained earlier substituting that velocity ratio and using rho 1 p 1 by rho 1 as a 1 square 

by gamma this is the relationship that we obtained which gives the normalized pressure 

rise also the pressure ratio p 2 by p 1 then, can be written as 1 plus 2 gamma by gamma 

plus 1 into M 1 square minus 1 the ratio delta p or p 2 minus p 1 by p 1 is often referred 

to as the shock strength the temperature ratio can be obtained using the perfect gas 

relationship p rho p equal to rho r T that is p 2 by p 1 into rho 1 by rho 2 and this gives p 



2 by p 1 is 1 plus 2 gamma by gamma plus 1 into M 1 square minus 1 into rho rho 1 by 

rho 2 which is rho 1 by rho 2 is 2 plus gamma minus 1 M 1 square by gamma plus 1 M 1 

square which can be written as 1 plus 2 into gamma minus 1 by gamma plus 1 square 

into gamma M 1 square plus 1 by M 1 square into M 1 square minus 1 further from the 

temperature ratio we can obtain the ratio of speed of sound at the 2 stations as well as a 

ratio of the enthalpy at the 2 stations which are given as T 2 by T 1 for perfect gas.(Refer 

Slide Time: 15:14) 
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The limiting values for these ratios for air with gamma equal to 1 point 4 limiting values 

of the ratios when gamma is a fixed quantity given by 1 point 4 as is usually used for air 

we have already seen that into as M 1 approaches infinity is point 3 7 8 and the density 

ratio becomes ((no audio 16:38 to 17:20)) approaches to a very high value as the 

upstream Mach number reaches to very high value to the pressure ratio and temperature 

ratio also reaches a very high value and looking back to all these relations what we have 

seen is that for a thermo lean calorically perfect gas all the parameters are function of 

upstream Mach number and the specific gas ratio gamma. 
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Now, computing the change in entropy between the 2 stations you can write the change 

in entropy between the 2 station is 2 minus s 1 is C p log T 2 by T 1 minus R log p 2 by p 

1 which can be written as R log and substituting this pressure and pressure ratio and 

density ratio in this relation we have s 2 minus s 1 by R equal to log 2 gamma by gamma 

plus 1 M 1 square minus 1 ((no audio 19:31 to 20:11) since the flow process that we 

have considered here is is adiabatic. So, s 2 must be greater than or equal to s 1 since the 

flow is adiabatic and the relation it shows here that if M 1 is less than 1 then, s 2 minus s 

1 by r is negative and this condition is satisfied only if M 1 is greater than 1 and if M 1 is 

less than 1 s 2 minus s 1 by r is less than 0 if M 1 is less than 1 s 2 minus s 1 will become 

less than 0 which is ((no audio 21:50 to 22:24)) that is if M 1 is less than 1 then, we will 

have a decrease in entropy in the downstream which is of course, not possible as far as 

second law of thermodynamics is concerned and hence we see a mathematical proof that 

a jump from subsonic to supersonic flow is not possible in this case or that is through a 

shock a jump from subsonic to supersonic flow is not possible and the only possibility is 

from supersonic to subsonic jump. 
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A shock is called weak when the pressure rise across the shock is very small and looking 

to the pressure ratio relationship we can see that happens when M square minus 1 is 

small that is a shock is weak ((no audio 23:22 to 23:58 and 24:21 to 25:12)) and when 

this shock is weak that is when M 1 square minus 1 is small the change in entropy can be 

approximated the change in entropy then, can be approximated or in terms of pressure 

ratio gamma plus 1 by twelve gamma square or see that for a weak shock the change in 

entropy is third order of shock strength that is and in the limit of a very weak shock then, 

we can say that change in entropy is almost negligible and it is the process is almost 

isentropic or nearly isentropic. 

Since the flow across the shock the shock or the flow in this situation that you considered 

is adiabatic we had T 0 2 equal to T 0 1 as the flow is adiabatic T 0 2 is T 0 1 and the 

pressure ratio the stagnation pressure ratio can be obtained in terms of the entropy 

difference and which can be written that p 0 2 by p 0 1 to be 1 plus 2 gamma by gamma 

plus 1 M 1 square minus 1 of the power 1 by gamma minus 1 into gamma plus 1 M 1 

square by gamma minus 1. 

 since change in entropy is directly proportional to change in total pressure hence the 

total pressure is also change in total pressure is also of third order in shock strength here 

this shock strength or shock example relations we have expressed in terms of upstream 

Mach number. However, often they are expressed in terms of other parameters 



particularly in terms of pressure jump instead of Mach numbers and in general the shock 

jump relations are known as Rankine Hugoniot relationship. 

So, considering the flow through a uniform duct we have seen that for a compressible 

flow through a uniform duct if we have a supersonic flow at station 1 then, we can have a 

subsonic flow at station 2 and since you have used integral relationship at station 1 and 

station 2 any non equilibrium region is possible between station 1 and 2 only required 

mainly that flow at station 1 and station 2 must be in equilibrium and equilibrium, non 

equilibrium region may exist between station 1 and station 2 since the station 1 and 

station 2 and then, region between them has no restriction in size. That is, the non 

equilibrium region can be of infinitely thin extent we can consider that station 1 and 

station 2 may be just the 2 sides of 1 thin line and in that case, that thin line is called as 

the shock wave. As you have mentioned earlier that in real flow this shock thickness 

cannot be 0 there will be a finite thickness even though very small and within that it is 

there will be very large and rapid changes of the flow parameters velocity and 

temperature pressure and density and this rapid changes in velocity gradient and 

temperature gradient give rise to this dissipative forces and which causes increase in 

entropy across the shock. 

Since, we have considered 1 dimensional flow and the shock is sending across it that is a 

normal shock and in 1 dimensional flow that is the only possibility of a shock wave a 

normal shock and these normal shock relations that we have derived here are based on or 

assuming that the shock is stationary and the fluid is flowing through it with a speed u 1 

upstream and u 2 on the downstream . However, in all practical many practical problems, 

the shock is found to be propagating through the fluid as you can think about that if the 

on an aircraft moves the shock system of this air craft or the wing also moves with it and 

in that case the problem becomes a moving shock and we would like to revisit the shock 

relationship for a moving shock that is when the shock is propagating through the fluid 

through a speed u s that is. 
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Let us consider now a moving shock wave problem moving shock wave problem let us 

say we have a duct and we have the shock moving with speed u s and as the shock moves 

with the speed u s the fluid behind it that is the fluid in this region is also being dragged 

with it. And, let us say that the fluid behind it is moving at a speed u b and let us say that 

fluid in front of it is stationary. That is, the shock is moving through a stationary fluid 

and we would like to see in this case the relationship of the flow parameters or fluid 

properties in station a and station b. 

Now, what we did earlier that we satisfied the conservation laws that is namely 

continuity momentum and energy equation between the 2 region at 1 ahead and 1 behind 

the shock wave now see that we cannot do that in this problem we cannot satisfy the 

continuity equation between station a and in a region a and region b simply because that 

the fluid in region a is not part of the fluid that is flowing in flowing through region b it 

is always separated by this shock. 

However, what we can do in this case is, we can consider a change in reference system in 

which let us say you consider an observer who is moving with the shock. Let us say in 

this case, the an observer who is moving with the shock wave then, with respect to this 

observer then, with respect to this observer the fluid in region a which will now 

designate as region 1 is moving with a speed u 1 to this reduction and fluid in region 2 



that is b is moving at a speed u 2 ((no audio 36:03 to 36:35)) this is with respect to an 

observer moving with the shock. 

Now, in this configuration of course, we can and the shock is stationary the shock is 

stationary. Now, in this configuration of course, we can satisfy the conservation laws 

between a station in region 1 and region 2 because, now the fluid in region 1 and region 

2 are part of the same flow. 

(Refer Slide Time: 38:03) 

 

Now, what you find here that u 1 equal to u s and u 2 equal to u s minus u b which is u 1 

now the static density is pressure and temperatures on either side of the shock they are of 

course, not affected by these transformation the shock jump relation for these quantities 

that is density pressure and temperature remains same as we have obtained earlier the 

jump relation the jump relation in this case are may be written in terms of shock speed 

and the speed of the fluid behind the shock and using the transformation the shock Mach 

number we can defined as ((no audio 40:13 to 40:57)). 
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Now, using the pressure ratio p 2 by p 1 as 1 plus 2 gamma by gamma plus 1 M 1 square 

minus 1 we can obtain the shock velocity the shock velocity in a perfect gas ((no audio 

42:38 to 43:40)) the density and temperature ratio similarly can obtained by the Rankine 

Hugoniot relationship that is rho 2 by rho 1 and u 2 by u 1 also remains same in terms of 

M 1 and using the (( )) M 1 as obtained from here this in terms of pressure ratio we 

obtain them ((no audio 44:25 to 45:08)). 
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Similarly, we can direct the ratio of the temperature the flow velocity behind the shock 

flow velocity behind the shock that is u b can be written as u 1 minus u 2 which can be 

written as u s into 1 minus u 2 by u 1 and in terms of the pressure ratio this becomes a 1 

by gamma ((no audio 46:06 to 46:38)) the static quantity as we have mentioned that in 

same for both the system. However, when you come to total quantities they are they are 

not same in the 2 system and (Refer Slide Time: 38:03) say it should be noted that in 

coming back to that configuration 1 and a and b and 1 and 2 it can see the that the total 

quantities at region a are same as the static quantities at region a because, the fluid they 

are stationary that is h 0 a is same as h a. However, this is not same as h 0 1 h 0 b that is 

a stagnation enthalpy in region b is simply the static enthalpy at region b plus the kinetic 

energy of the fluid in region b that is half u b square. However, this is not same as h 0 2 

total enthalpy at 2. 

Also, the total enthalpy in region b is not same as the total enthalpy at region a. 

However, the total enthalpy in region 2 which is simply h 2 plus half u 2 square that is 

equal to h 1 plus half u 1 square equal to h 0 1 and using this relationship the total 

quantities or the stagnation quantities can be found behind and across the shock. Shock 

will be called weak shock if the normalized pressure jump is very small that is a shock is 

weak shock is weak when p 2 minus p 1 by p 1 that is the normalized shock jump is very 

small the disturbances are also then, very small and they can be obtained by expanding 

these relationship in term when series of delta p by p 1 and retaining only the first order 

terms and this gives the density rise to be gamma minus 1 by gamma into delta p by p 1 



the shock speed will be approximately u 1 into 1 plus gamma plus 1 by 4 gamma that is 

the speed of a very weak shock is very close to 1 very close to 1 sorry very close to a 1. 
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For a very strong shock this p 2 by p 1 is very large that is very strong shock that is p 2 

by p 1 is very large and in that case rho 2 by rho 1 approaches as before gamma plus 1 by 

gamma minus 1 T 2 by T 1 approaching gamma minus 1 by gamma plus 1 into p 2 by p 

1 a shock speed approaches u 1 into gamma plus 1 by 2 gamma into p 2 by p 1 to the 

power half and u b that is the flow velocity behind the shock is a 1 into. 

So, in our discussion of flow through a uniform duct or flow through a normal shock we 

have seen that when a supersonic flow crosses a normal shock its pressure increases very 

rapidly or pressure increase by jump and in the limiting case of a perfect gas with gamma 

equal to 1 point 4 the pressure jump can approach very high value similarly the density 

also undergoes a very rapid or very jump and the limiting value of the density jump can 

be 6 for perfect gas with gamma equal to 1 point 4 which is usually chosen for air the 

downstream Mach number become subsonic and across a very strong shock the 

downstream Mach number approaches a limiting value for air with gamma equal to 1 

point 4 the value become point 3 7 8 you have also seen that the second law of 

thermodynamics excludes the possibility of a jump from subsonic to supersonic 

condition meaning that shock cannot occur in a subsonic flow and through a shock flow 



cannot accelerate accelerating shock is impossible as dictated by second law of 

thermodynamics. 

We have also considered a moving shock problem. However, the shock is moving at a 

certain speed through a stationary fluid and we have seen that the shock then, induces a 

velocity to the fluid which is behind it that is the shock sets the fluid behind it into a 

motion and raises its pressure and density temperature the ratios of the temperature 

density and pressure that is all the static quantities remain unaltered as in case of a 

stationary normal shock. However, we have expressed this relation now in terms of 

pressure further we have seen that the stagnation quantities are in the 2 configurations 

are different and we have given how the stagnation properties in the 2 regions can be 

calculate computed. 

We have also found the limiting values for the density pressure and temperature rises as 

well as the shock speed and the flow velocity behind the shock what we have seen 

particularly today that a moving shock or a disturbance the sets the fluid in motion. 

However, how this motion develops? That is what we will try to see next in our next 

lecture; thank you. 


