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Lecture – 37 

Restricted 3-Body Problem (Contd.,) 

 

Welcome to Lecture number 37 we have derived the Jacobian integral. Now we will be looking 

into the Lagrange point, what this is exactly. 

(Refer Slide Time: 00:25) 

 

If you I have shown here the 𝑥𝑠, 𝑦𝑠 and 𝑧𝑠 so this is the synodic frame, synodic frame as I have 

defined earlier. Now, in this frame if the observer is sitting at say B this frame origin is located 

at B which is nothing but the centre of mass of the mass 𝑚1 and 𝑚2. So, if any observer is 

located at B and he is rotating along with the synodic frame the synodic frame is rotating at the 

rate ω and let us assume that xy plane is the plane in which the 𝑚1 and 𝑚2 is lying. 

 

So it is possible that if any mass is located somewhere which is I have shown here by m whose 

coordinate is x, y, z. So this mass may appear stationary to the observer at point B in the synodic 

frame so mass m may appear to be at rest to an observer in synodic reference frame and if this 

situation occurs we say that the mass m is in equilibrium condition in the synodic frame. 

 

So, under what condition this can happen or say, what is the location of the point m or the 

location of this elementary mass m in the synodic frame. Synodic frame is our 𝑥𝑠, 𝑦𝑠, 𝑧𝑠 so in 

this frame where it should be located such that the mass m appears to be at least when observer 



sitting in the synodic frame so he is also rotating observer is also rotating along with synodic 

frame this is what it implies. So, this is the thing I am going to explore here now if I say 

equilibrium. 
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Okay the equilibrium has a very general definition we can write equilibrium as the it is the 

stationary state of a system this is a general definition and if your system is written like this f 

x, y, z or here I will remove this, this part and let us write this as 

�̇̃� = 𝑓(�̃�, �̃� ) 

 So, written here in this format and there may be �̃� also this is called the input and the controls 

this is called the input and this is the state �̃� is the n into 1 vector this is called the state vector. 

 

So, for an autonomous system which is defined in this format the equilibrium will be defined 

by �̇̃� = 0. So, that means we will have here 

�̇̃� = 𝑓(�̃�) = 0 

and this we need to solve to get �̃� equilibrium so this is the equilibrium state. So, this is how 

we solve for the equilibrium point. For an example, if you have a spring mass system this is a 

linear system we assume that thickness to k this is mass m. 

 

So we know that the equation of motion can be for a displacement it can be written as and u is 

the force supplied to this so you can write it like in this fashion and if we write x = 𝑥1, 𝑥1̇ = 𝑥2 

and 𝑥2̇ then from this place what we observe that and 𝑥1̈ this will be equal to here �̈� = 𝑥1̈ this 

will be equal to 𝑥2̇.  



 

So, from this place we can write this as m times 𝑥2̇ + k times 𝑥1 = u and a long way this we 

have another equation 𝑥1̇ = 𝑥2 while we have written in this format. So this is the state space 

form reduction and you can see that 𝑥1̇ and 𝑥2̇ then can be written in matrix format as from this 

place we can get the 𝑥2̇ this will be - k/m 𝑥1 here we will have 𝑥1, 𝑥2 k - k/m 𝑥1 and this 

quantity will be 0 here and in this place, this will be 0 and this will be 1 by if we divided the 

whole thing by m. 

 

So this will be 1/m so this equation we are writing as 𝑥2̇ = - k/m 𝑥1 + u/m so only - k/m 𝑥1, 𝑥2 

part is 0 there and you get u/m in this one we have only 𝑥1 = 𝑥1̇ = 𝑥2 so we are getting from 

this place using this and this 𝑥1̇ = 𝑥2. So, this is a linear second order differential equation and 

it can be reduced here in this format. And if you see I can write this as �̇� = 𝑓(�̃�) + g (�̃�) here 

in this case u is a single input case. This is the only one-dimensional input maybe you can write 

here �̃� you can remove it is not a problem.  

 

So, what we observed that if �̃� = 0 so where the equilibrium point will lie so that we have to 

solve using no external input. In that case you do not have any external input means the time 

dependent we do not give time dependent if you have done the controls course so you may be 

aware of all these things we are not putting time dependent.  

 

So, if we take u as the state feedback okay so in that okay. We can skip all those things because 

many people may not be aware of all those things so it is better to escape this issue. So, the 

only thing that I wanted to point out that in the condition u dot �̃� = 0̃= f(x) and this we need to 

solve and immediately we can see that 𝑥1 = 0 and 𝑥2 = 0 this is the equilibrium state.  

 

So, this is for the this is a situation for the case where we have a linear system. The nonlinear 

system is there then in that case, you get your equation here in this format where this is a 

nonlinear function and therefore solving this it may be literally troublesome varying from case 

to case. So, this way we get the equilibrium point so with this; what we okay coming back to 

this place then we can see that using the notation what we have developed earlier.  

 

So, using that we can reduce it in the format where it appears as �̃�. So instead of doing this just 

note that �̈� = �̈� this �̈� = 0 and �̇�, �̇�, �̇� = 0 this will define as equilibrium point. So in equilibrium 



state no acceleration in the synodic frame and no velocity also in the synodic frame means the 

point is not moving at all it is not accelerating it is not having any acceleration and no velocity 

also and therefore it will appear a stationary to an observer in the synodic frame, and then we 

can solve this equation. So, the first equation then gets reduced to. 
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− 𝜔2 𝑥 =  −
𝜇1

𝑟1
3 (x – 𝑥𝐵1)  −

𝜇2

𝑟2
3 (x + 𝑥𝐵2) 

the second equation gets reduced to 𝜔2 y and in the third term we do not have the 𝜔2 term so 

the left hand side, simply we write this as  

−𝜔2𝑦 = −
𝜇1

𝑟1
3  𝑦 −

𝜇2

𝑟2
3 𝑦  

0 = −
𝜇1

𝑟1
3  𝑧  −

𝜇2

𝑟2
3 𝑧 

this is equation number 6. From equation 6 we can see that it can be rewritten as and the 

quantity here in the bracket, this is a non 0 quantity because 𝑟1 and 𝑟2 they are non-zero and 

this implies therefore z = 0. 

 

So, simply the first thing that we get from here is the Lagrange points are situated in the xy 

frame okay that means here what we have shown this z this quantity z will be equal to 0 the 

whole thing is going to lie I will show it by red colour whole thing will lie in this plane okay 

lying in the 𝑥𝑠, 𝑦𝑠 plane. 

 

This component this is going to be equal to 0 for Lagrange point. So, this is a first simplification 

we have got now the situation gets reduced into a form this is 𝑚1 here and this is 𝑚2 and all 



your points will be and there is x and y x we have taken in this direction this is 𝑥𝑠 direction and 

this direction we have taken as 𝑦𝑠 direction. So, all your points are going to line in this plane 

and our job is to find out all of those points.  

 

So, all together there are 5 Lagrange point and they are named as 𝐿1, 𝐿2, 𝐿3 these are colinear 

lie in the; they are in the same they are along the same line. They are colinear and 𝐿4, 𝐿5 are 

along the y direction means both x and y coordinates will be available for this lie we write this 

as the AB so we can write it in a better way lie along are off the line AB.  

 

So our search if for all these 3 points, 5 points 𝐿1, 𝐿2, 𝐿3, 𝐿4 and 𝐿5 these are five equilibrium 

points but our job does not end here, they used to relate it to this will be better all these points 

are stable or not because if you want to locate any say for a satellite over that point okay will 

it stay there, this will be the big question and this we also need to answer and that is called the 

stability of the Lagrange point and the stability how do we measure it? 

 

So if this is the say the Lagrange point 𝐿1 okay and if the satellite is lying over this i will make 

it little larger and then I will show the satellite with a blue dot okay and if the satellite is 

disturbed from this place to this place so can bit return back again to the red point which is a 

Lagrange point which I am going to work out later on. So, this issue we will be dealing in this 

topic. 
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These points are also called Liberational points and also, if you look into the calculus or you 

say the differential geometry from there you will see that these are the double points. We will 



look into the for this definition double points what these are so our conclusion right now is 

Liberational points are the Lagrange points fall in the orbital plane of the primary and 

secondary masses primary mass 𝑚1 and secondary mass 𝑚2 or masses of body. 

 

Now from equation (5) from this equation  

 

𝜔2 y = +(𝜇1/𝑟1
3 + 𝜇2/𝑟2

3) y 

 

on both sides we have minus sign so that makes it plus we can remove it. Assuming why it is 

not equal to 0 assuming y is not equal to 0 and ω = 1 on normalized scale. So normalized scale 

solving it is a little easier as compared to the non-normalized scale and moreover 𝜇1 we have 

written as in the normalized scale as 1 – 𝜇∗ this is equation number 7. 

 

Now this we can utilize in equation number 5. So, equation number 5 we have 𝜔2 x so means 

equal to we will put 1 this is - x = these other things we have to copy from this place and 

remember on the normalized scale we have this representation 𝜇1, 𝜇2 already we have 

discussed. Hopefully we have replaced correspondingly with all those quantities. 

 

So, 

− 𝑥 =  
𝜇1

𝑟1
3

(𝑥 – 𝑥𝐵1) +
𝜇2

𝑟2
3 (𝑥 +  𝑥𝐵2)  

cancelling the sign and rearranging the terms what we observed that this is 𝜇1/𝑟1
3 + 𝜇2/𝑟2

3 x so 

we can make this whole thing in the next step, i will make it here let us say I write here in this 

place this is the x = 𝜇1/𝑟1
3 𝑥𝐵1 okay and then rearranging the terms so you get terms like this 

and the next one we will have new 𝜇2/𝑟2
3 𝑥𝐵2 – 𝜇1/𝑟1

3 𝑥𝐵1 and then inserting it here in this 

place. 

 

This is your equation (8). I am inserting equation (7) into (8) yields this term will cancel out 

these two term in that case because this is equal to 1 this quantity equal to 1 therefore this term 

and this term they will drop out and we are left with 

𝜇2

𝑟2
3   𝑥𝐵2  =

𝜇1

𝑟1
3  𝑥𝐵1 

 We rewrite this on the next page. 
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𝜇1/𝑟1
3 𝑥𝐵1 = 𝜇2/𝑟2

3 𝑥𝐵2 and 𝜇1 on the normalized scale 𝜇1 is 1 – 𝜇∗ and then we will have 𝑟1
3 

and then 𝑥𝐵1 is how much? 𝑥𝐵1 is see here this quantity we have written as 𝜇∗ and this is 𝑚2 

and 𝑚1 was here and this is 1 – 𝜇∗ and B is here this distance which is your 𝑥𝐵1 in magnitude 

wise. So, this quantity is 𝜇∗ and the quantity from here to here this is the 𝑥𝐵2 this will be equal 

to 1 – 𝜇∗.  

 

So 𝑥𝐵1 is 𝜇∗ similarly on the right-hand side 𝜇2is 𝜇∗ divided by 𝑟2
3 and 𝑥𝐵2 is 1 - 𝜇∗. So, 

immediately what we observed that 

1

𝑟1
3  =

1

𝑟2
3 

and this implies 

𝑟1 = 𝑟2 

 So immediately what we observed that if you have points here, the primary and the secondary 

bodies in 𝑚1 and 𝑚2 so two of the Liberational points or the Lagrange points are going to lie. 

 

And this will be 𝑟1 and this will be 𝑟2 whether 𝑟1 = 𝑟2 this is the immediate result what we get 

and somewhere here your barycentre is located and this we are writing as 1 – 𝜇∗ this on the 

normalized scale and this as 𝜇∗ this distance as 1 – 𝜇∗ and this distance as 𝜇∗. But still our job 

is not over here we need to workout further because on the normalized scale what will be the 

value of 𝑟1 and 𝑟2 thar we have to get also we need to find out let us say this is point 1 and this 

is point 2.  

 



So, either we write as A and B so if we write it like this rAB what is the relation between all 

these. This also we need to derive. Moreover, what we observe that we will have this 𝑟1 = 𝑟2 

will be satisfied for another point which is lying here just above on the other side of this then 

also this will be 𝑟1 and 𝑟2 here this is your mass m this is mass m. So, either mass m can be 

here and it can also be here and then it will appear to be stationary to an observer which is 

sitting on at the point B in the synodic frame which is rotating. So, in the next class we are 

going to work out the other relations so we will stop here thank you very much. 


