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Restricted 3 – Body Problem (Contd.,) 

 

Welcome to lecture 39. We have been discussing about the Lagrange points on the normalized 

scale, so we start with that.  

(Refer Slide Time: 00:24) 

 

So if you look in the previous lecture, we have derived this. So 𝜇1/𝑟1
3. 
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And then  

𝜇1

𝑟1
3 ×

𝑟12

𝑥𝐵2
  = 1 



. So if you look into this 𝜇1 on the normalized scale.  
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Once we are choosing this on the normalized scale already we have mentioned somewhere 

this 𝜇1. So if you use the normalized scale for this. So 𝜇1 needs to be replaced by 

𝜇1  =  𝜇1  −  𝜇∗ 

So 𝜇1 is on the normalized scale, 1 - 𝜇∗, and 𝜇2 is 𝜇∗ on the normalized scale. Already the 𝜔, 

we have eliminated using the normalized scale what these things were remaining. Now, also 

the distances already we have mentioned that this is B. 

 

So this distance is 𝜇∗ and this distance will be equal to 1 - 𝜇∗, because if you add 1,  𝜇∗ times 

+ 1 - 𝜇∗ so this gives you 1. So this is unit distance, this is 1 and this is 2. So 

𝑟12 = 1 

 this mass is 𝜇∗ here and this mass is (1 - 𝜇∗) and depending on the heaviness of the mass with 

respect to each other, due to barycenter, it will shift either to the left or to the right. So, 𝑟12 = 1 

and similarly this 𝜇1 then is yours because G = 1, remember your 𝜇1 = G𝑚1 and then you are 

dividing it by G (𝑚1 + 𝑚2) to get 𝜇∗.  

 

Remove this, so this is and here let us write 𝑚2, 𝜇∗ you are getting it this way. So, already 

quantity in the denominator is 1. And G𝑚2 is nothing but your 𝜇2. So 

𝜇2 = 𝜇∗ 

 So this fact we are going to use and I have written here, in the same way the G times 𝑚1 

divided by G (𝑚1+ 𝑚2). We can check this the upper one is 𝜇1 and lower one is denominator 

is 𝜇.  



 

And this we have written as, this is nothing but your 𝜇1 star using normalized form which is 

nothing but 1 - 𝜇∗. Here, once we have written here 𝜇2 = 𝜇∗. So this is 𝜇2 and divided by 1,  

𝜇 = 1 

 so the same way we write here or write it like this 𝜇1 equal to because on the normalized scale 

𝜇 = 1 and therefore just gets reduced to 𝜇1 = 1 - 𝜇∗ which I have written here in this place. 

 

So if I insert here so this becomes (1 - 𝜇∗)divided by 𝑟1
3 and 𝑟12 is already 1, and 𝑥𝐵2 from this 

place it we look 𝑥𝐵2, so 𝑥𝐵2 is that this distance. This is 𝑥𝐵2 and which is nothing but (1 - 𝜇∗) 

already I have written. So we get this as 1 from here. And this implies 

𝑟1 = 1 

and this equal to 𝑟12. Also, if we go back and look here into this equation, so you will find that 

𝜇1 equal to on the normalized scale 

 

𝜇1  =
1 −  𝜇∗

𝑟1
3  

 

And 𝑥𝐵1 is nothing but 𝜇∗ on the right hand side you have 𝜇2 which is nothing but 𝜇∗ and 𝑟2
3 

and 𝑥𝐵2 is nothing but (1 - 𝜇∗) as per the figure we have made here. So from here, immediately 

we can conclude that  

𝑟1 = 𝑟2 

 So one result we are getting here, another result we are getting here in this place 𝑟1 = 𝑟2and 

therefore this must be equal to 𝑟2. So therefore, 𝑟1 = 𝑟2 . This is the result on the normalized 

scale. 

 

Something more I have to write it here, so 𝑥𝐵1 + 𝑥𝐵2 this we have written as 𝑟12. 

𝑥𝐵1 +  𝑥𝐵2 =  𝑟12 = 1 

 And on the normalized scale, this quantity is 1 and also 𝑥𝐵1 times 𝑚1, this is a center of mass 

property, 𝑥𝐵2 times 𝑚2, these are magnitude wise not with sign. So from here 𝑥𝐵2 we can 

replace in the above equation for we get 𝑥𝐵1 + 𝑥𝐵2 from here become 𝑥𝐵1 𝑚1 divided by 𝑚2 

this equal to 1. 

 



And you can check 𝑥𝐵1 can be taken outside. So this becomes 𝑚1 + 𝑚2 divided by 𝑚2 = 1. 

And on the normalized scale, if I choose 𝑚1 + 𝑚2 = 1, so 𝑥𝐵1 and 𝑚2 we write as 𝜇∗ as we are 

writing and this as 𝜇. So this becomes 𝜇 divided by 𝜇∗ = 1. And immediately we can see that 

𝑥𝐵1 = 𝜇∗ divided by 𝜇 and 𝜇 = 1 on normalized scale. Therefore this gets reduced to 𝜇∗. And 

using this, then we can also write this implies 

𝑥𝐵2 = 1 - 𝜇∗ 

, because on the normalized scale we have 𝑥𝐵1 + 𝑥𝐵2 = 1. 

 

So immediately we can write 𝑥𝐵2 = 1 - 𝜇∗. So this is your result on the normalized scale. So 

what we are getting here that using this implies as from the previous discussion we are getting 

here 

 𝑟1 =  𝑟2 =  𝑟12 = 1 

 So the 3 masses the 3 bodies lie on the vertices of an equilateral triangle in the synodic frame. 

So and this is a configuration for Equilibrium state or Lagrange points. We are writing this as 

Lagrange points or we are writing this as the Liberational points.  

 

This is your mass 𝑚1 this is mass 𝑚2 here and mass 𝑚3 is present here. This is 1, this is 1 and 

this is 1. So, you know well that on this side also 𝑟1 = 𝑟2will be satisfied and this is 𝑟12. And 

immediately, if the barycenter is here, and it depends on which mass is heavier if 𝑚2 is heavier 

it will lie on this side if it is 𝑚1 is heavier it will lie on this side. But in all the figures, I have 

shown it on the left hand side.  

 

So I will continue with this figure only and it is coordinate can be then immediately determined. 

This is y coordinate and from here to here, this is the x coordinate. So this is your mass m 

whose coordinates are abscission and coordinates are x and y, therefore y = 1 cos 1 sin 60° this 

equal to root 3/2, and we give here plus, minus to indicate that here in this direction this is 𝑥𝑠 

and downward we have the along this direction we have y s. 

 

So on this side this is positive, on this side we are showing the negative distance so accordingly 

we can choose from this point. So, this is your ordinate on the normalized scale. And the x 

coordinate similarly can be obtained from this point, this distance is known to us. This is 𝜇∗ 

and this distance is also known to us, let us write this point as D and this as A. So, AD is also 

known to us which is 1 cos 60° that is 1/2. 



 

So, AD - AB that gives you BD which is your x here in this case. So, 1/2 - 𝜇∗ this distance 

from here to here, this distance is your 𝜇∗. This mass is 1 - 𝜇∗. You can check 1 - 𝜇∗, the left 

hand side mass 𝑚1 times 𝑥𝐵1 which is 𝜇∗ you can see on the right hand side 𝑚2 𝑥𝐵2. So 𝑚2 is 

𝜇∗ and 𝑥𝐵2 is 1 - 𝜇∗. So they satisfy they are equal to each other. So there is no problem in that.  

 

So this way we have got the solution here in this place. So x coordinate is given by 1/2 which 

is the distance from this point to this point, this is half of the 𝑟12. This is 1/2 and minus this 

distance which is 𝜇∗. So this turns out to be 1/2 - 𝜇∗. So this used x coordinate and what we 

have got on the normalized scale. Now instead of doing this way alternatively, we can work 

using the formal method. 

 

Which I have told you that the formal method in that will involve where ω we do not make it 

to 1, we carry it and then solve it. But in that case, depending on how you are trying to proceed, 

it can be done in a little shorter also but, I will take a little longer root and finish this part so 

that you understand it better what is that? What are the differences between all of them?  
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From equation 2 here in the lecture 38 this equation. Already we have written that in the case 

ω = 1, we made it 1 and solve the problem on the normalized scale. Now, I am not going to 

normalize it. From equation 1 lecture 38 similarly 𝜔2 x will be equal to. So from this place, we 

insert A in B into B we get 𝜔2 x = 𝜔2 x + same result as we have derived earlier till this, it is 

the same but thereafter the things has start getting a little lengthy and this implies. 
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Now equation this equation. Equation A can be rewritten as rewritten using 

𝜔2 = 𝜇/𝑟12
3  

. This already I have explained that the period of these 2 particles o𝑟2bodies 𝑚1 and 𝑚2 about 

each other or either about the barycenter will be given by 𝜔2 = 𝜇/𝑟12
3  here this is 1 and this is 2 

this distance we have written as 𝑟12. This we name as inserting equation D into A. 

𝜇

𝑟12
3  =

𝜇1

𝑟1
3 +

𝜇2

𝑟2
3 

 

And immediately you can see that if you tend to normalize by dividing both sides by 𝜇 and 

writing this as 1 - 𝜇∗ and 𝜇2/𝜇 = 𝜇∗, so this gets reduced to the original form what we have 

started with. Equation E can be rewritten using the earlier formulation we have here, using C, 

using equation C as follows. This equation we are rewriting here 𝜇1/𝑟1
3 + 𝜇2/𝑟2

3 this we have to 

replace.  

 

So, we are going to replace from this place 𝜇2/𝑟2
3 𝜇1/𝑟1

3 times 𝑥𝐵1/𝑥𝐵2 and this is equal to 

𝜇/𝑟12
3  and if we rearrange now this implies 

𝜇1

𝑟1
3  

𝑟12

𝑥𝐵2
  = 

𝜇

𝑟12
3 . Remember that this quantity here, this 

is nothing but 𝑟12. So therefore, from this we get  

𝜇1

𝑟1
3 =

𝜇

𝑟12
4 𝑥𝐵2   

(Refer Slide Time: 22:43) 



 

Similarly, we can get this step I am leaving to you get 

𝜇2

𝑟2
3  =

𝜇

𝑟12
4  𝑥𝐵1  

. Now, if you divide F/G dividing F/G we get 𝜇1/𝜇2 times, 𝑟2
3 divided by 𝑟1

3 on the right hand 

side 𝜇 r this quantity is common, so this we get as 𝑥𝐵2/𝑥𝐵1. And as we know that 𝑥𝐵1 times 𝑚1 

this equal to 𝑥𝐵2 times 𝑚2. And dividing it by 𝜇 which is 𝜇 is nothing but we can what we can 

do we have finished the stage is already I have done, but I keep repeating the things for your 

convenience. 

 

G times 𝐵2 G 𝑚2 divided by G times. So it does not make any difference, 𝑚1 and 𝑚2 is nonzero 

on both sides. We have divided by it and G is present throughout. So this leads you to 𝐺1 and 

this quantities 𝜇1/𝜇 and 𝑥𝐵2 and this is 𝜇2 divided by 𝜇. So 𝑥𝐵2 divided by 𝑥𝐵1 is nothing but 

𝜇1/𝜇2 or we can write it like this. So this is nothing but you𝑟1 - 𝜇∗ divided by 𝜇∗.  

 

So this quantity is 𝜇1/𝜇 and now this is G. This part cancels out leaving us with 𝑟1 whole cube 

this implies 𝑟1
3 = 𝑟2

3. So on the non normalized scale, this is how we get the result and this 

implies your  

𝑟1 = 𝑟2 

. And then once we put back this result into this equation E for here let us write this which this 

is I inserting equation I into equation E and this equation for the left hand side is 𝜇/𝑟12
3  hand 

side is 𝜇1/𝑟1
3 . 

 



And 𝜇2/𝑟2
3 replace this. So we write it like this 1/𝑟12

3  this equal to 
𝜇1

𝜇
 𝑟1

3 + 
𝜇2

𝜇
 𝑟2

3 and this implies 

𝜇1 by this is (1 - 𝜇∗) 𝑟1
3 + 𝜇∗/𝑟2

3. Now already 𝑟1
3 and 𝑟2

3 we have seen that it is equal, therefore, 

𝜇/𝑟12
3  this becomes equals to 1 - 𝜇∗ divided by 𝑟1

3 + 𝜇∗/𝑟1
3 and you see that this gets us to 𝜇 

already we have divided this is 1.  

 

So 𝑟1
3 and this implies 𝑟12 = 𝑟1. So what we have got here? 

𝑟12 = 𝑟1 

. This is I then this equation we write as J. So, from I and J we see that 

𝑟1 = 𝑟2 = 𝑟12 

 So we have got to the same result, what we got using the equilateral triangle the normalized 

scale and the unnormalized scale also we get the same result. There is not nothing much 

different. But we can observe that doing by this method. 

 

It has taken us a lot of time and we do not also get anything extra in terms of understanding of 

the system. Therefore, normalized scale working it is always preferable. But still, I will 

complete this part on the non normalized scale. And also we have to go and find out these are 

the non collinear solution means 𝑚1 and 𝑚2, they are lying here and m is lying here. Here your 

m is lying either m is lying here; this is the solution on the equilateral triangle. 

 

Now we look for the collinear solution. Why we look for the collinear solution because the 

equilibrium can also exist in the collinear form, equilibrium states that will be visible from if 

you go back look here into the equation. 
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See in the equilibrium state 𝑥̇ and 𝑦̈ this will be 0 and what we are left with this term. So there 

we assume that y is nonzero. But if y is 0 so the right hand side also equal to 0 and left hand 

side also equal to 0. That means y = 0 is also a solution for the equilibrium state and z = 0 

already we have got. From here we have got that z = 0 by assigning this quantity to 0. Similarly 

here y = 0, if you put here y = 0, y = 0, y = 0 and this already for the equilibrium these things 

are 0.  

 

This equal to 0, this equal to 0. So therefore these things are eliminated. And the equation 2 is 

then satisfied with y = 0 also. So, therefore looking for the collinear solution is also important.  
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Now we can look into the collinear solution for equilibrium points or the Lagrange points. And 

this we are doing on the basis of writing 𝑦̈ - 𝜔2y + 2ω𝑥̇. Here this quantity we are setting to 0 

this quantity we are setting to 0. So minus 𝜔2 y and as we can see this can be written as 

 (
𝜇1

𝑟1
3 +

𝜇2

𝑟2
3 − 𝜔2) 𝑦 = 0 

 So this can be satisfied if y = 0, this will immediately get satisfied. This is minus here.  

 

So if I = 0, we are getting the solution that means now we have to look for the solution where 

𝑚1 and 𝑚2 are lying like this y = 0 and also z = 0. That means we have only the 𝑥𝑠 and here 

this is B so y s we have taken it down side. So here in this situation our equilibrium points will 

lie only along this axis. And we have to search for where those equilibrium points are lying. 

So we will do this in the next lecture. Thank you very much. 


