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So let us  now start doing what is called as Rankin Hugoniot, so you are  not talking about the

relation that Rankin has with her on you but right but you must have come across Hugoniot when

you were doing guest dynamics for example so you do not  come across you go to you so what

did we do at the time when you if you did they gas dynamics course what you typically do is you

are looking for what is called as dump condition across shocks right so you want to now treat

shock as a discontinuity and then want to conserve equations across just saying.



So much mass  came in on this  side  and it  should be  equal  to  so much mass  that  side and

momentum here equals momentum there and so on we try to do something similar here except

that we want to now consider a reaction zone instead of a shock necessarily the reason why we

want to do that obviously is we find that combustion is too complicated right so is it possible for

us  to  actually  live  without  combustion  right  or  without  having  to  worry  about  combustion

without having to solve combustion problems.

Is it possible for us to actually deduce some gross features for the flow of reactant gases into a

reaction zone by looking at how what comes out of it in relation to what went in right without

having to actually look at what happens inside so we want to now treat the region where the

reactions are happening like a black box and then simply want to look at what is going in and

what is coming out right, and see if we can learn something about so the justification for this is

that most reactions happen in a very thin zone.

And so it is  possible for us to action you do not  necessarily want to say that we are adopting this

is like a surface of discontinuity we do not  want to really have like a jump condition across the

surface but it is  jump condition across the region, so it could be a little thick all right but that is

okay but you know if it is going to fill up the room then you are not going to be able to do this so

obviously we want to have it confined to some region which across which you can apply jump

conditions. So we notice that most reactions take place in a region in a region so we can treat

these  regions  as  discontinuities  between  conditions  corresponding  to  what  we  would  callas

reactants on one side and products.

On the other side right so as a simple case of course let us  consider a 1d steady situation right so

consider a steady 1dflow right and take a flame fixed coordinate system that means you are  not

going to say if you know had a flame that is occurring over here we are simply going to say that

whatever is coming in is coming in at a velocity U 0 and what's going out is going at a velocity U

∞ and this has condition conditions ρ 0 V 0 T 0 Y I 0 and this has conditions ρ ∞ from P∞T∞ Y

R ∞ right I go I goes from 1 to N for n species right.



So what that means is so how did you draw this boundary how do you now decide that what is

outside of this region outside of this region outside of this reaction zone outside.
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The reaction zone on either side nobody answer present no gradients in any quantity right is

present that means all the variations are happening only here that mean you started out with a

uniform ρ 0P 0 T 0and why not all the jumps that are happening right or happening only within

this and then you are now ending up with a T ∞ P ∞ ρ ∞ and why I infinities on the outside.

Which is it is no uniform on the other side so all the variations are happening there what that

means is this is a this is now a essentially a stationary combustion V stationary combustion wave

involving not only reactions but also all the heat transfer viscous effects diffusion everything

right because all the all the diffusion he turns from viscous effects all of them based depend on

ingredients right and then it says all the gradients are contained in this so diffusion viscous and

heat transfer.

So maybe I should just write here that is okay so that is  what is going on within this very small

region is it okay can we can we do this do you have a feel for what is going on if we if you were



to deal with geodynamic shocks and treat that as a condition tenacity we will find that the shocks

are only about a few mean free path stick okay, and that is very thin strictly speaking but few is

less than 10 mean free path stick well we are  here I is  not going to be so bad or so thin right so

if you now think about like a flame like in a Bunsen burner you are  expecting.

It to be less than a millimeter thick or around that okay, some conditions it could be around about

a millimeter or so that is still quite small quite thin right that is for a flame is it possible for us to

now think about like a flame that happens along with a shockwave right like reactions happening

along with the shock wave or in other words.

Whatever shocks that you have come across were because they were actually propagating in non

reacting  unit  mixtures  what  happens  if  you  now were  thinking  about  shops  propagating  in

reacting mixtures what will happen will you have reactions that happen along with it right so is it

possible for us to deduce those then will we have what kind of a flame but in general what you

are basically thinking is whatever we are thinking about its recently tenant okay, we can think

about this is say a little black box.

That is  quite thin and on either side and all the greens are in there and on either side you have

uniform flow of reactants on one side and products on the other side okay now if I had this

picture this is obviously a flame fixed coordinate system if they want to have like a lap fixed

coordinate system what do you think will happen so you now have this you not coming in here

and trying to make this stop right that is  because we are we are traveling with the shock so if

you had a still set of reactants and the shock actually tries to go.

I should not say shock strictly speaking could be a flame just a reaction zone right so this travels

like this that means the reaction zone is eating into the fresh reactants maybe still  fresh still

reactants right so this is strictly speaking supposed to go like this but I now find out mark my

words now I now find out at what speed this goes and then try to oppose that with an equal

amount of velocity for the reactants to stabilize this just to stay there okay, and then it did not

stay otherwise I allow to travel with it that means I should know what velocity.



This goes so that I can travel along with that to me make it stationary with respect to me so there

is a little problem and in terms of like having to know what this velocity is or shall we get it with

this set of equations that is not true what we are really hoping for is if I were to give these I can

get these but in this problem I do not even know this strictly speaking keep that in mind okay

that is going to come back and haunt us a little later so our goal is to obtain product conditions

given reactant conditions right.

So question is our or all of that noon okay specifically you not like I have this question with me

and I have to seek an answer as we go along but let us, suppose at the moment I know what does

you notice and see what happens, so how are you going to obtain this these product conditions

obviously you have these conservation equations that you want to integrate across the shock or

the or the reaction zone. So mask continuity or mass conservation can be integrated right across

this discontinuity to give you can integrate this.

And then find out that all it matters is we have to substitute the end conditions starting from one

side to another side if you now travel X this way for example then you get ρ not equal or not you

not equal to or not ρ∞ u infinity you are so familiar with this that you do not even question how

this into how it how we did the integration and goddess right so I am just going to take liberties

and say this is how this is how I got it okay but then if so this is actually the incoming mass flux

and we are now saying that is outgoing mass flux and they are equal.

So if they are equal then can I now say both of them are equal to some common m dot that is like

a mass lock in a system so the mass flux kind of tells you the size of the or the strength of the

system okay higher the mass flux stronger is your propagation faster you is your propagation. So

let us call this equation one today, so momentum conservation so we have grown our units quiet

plus well actually strictly speaking we should we should be able to integrate and say ρ u 2 + P -

4 / 3 to a constant but then we also notice that we want to integrate this.

So across this region you do not have this term because you do not have any derivatives when

you are now trying to apply this to the left hand side or right hand side, so this can be written as

u0 2 + P0 equals ρ∞ right, so let is call this two this is also something that you are familiar with



but I should I should take a little bit credit to say that we did not get this dude this is true not just

for in viscid flows there is three even for viscous flows okay. So we could actually keep this and

try to evaluate it outside the discontinuity and find that Du/ DX = zero.

So it is like you can now viscosity alright but so long as you do not have velocity gradients you

do not have a viscous effect right so the viscous effects  are negligible  on either  side of the

discontinuity and therefore you get it to behave like an invested flow that's how in the Cites

emissions typically work right. Now we want to know how do you want to do this keep in mind

what we want to do is our goal is to obtain product conditions given reactant conditions all right

and the way we want to do this is we want to deal with it in some sort of a thermodynamic

fashion that is if I were to give you two thermodynamic properties that are representing the state

of the system.

When they were reactants is it possible for me to actually find out corresponding thermodynamic

properties for the state of the system and they have become products right. So it is sort of like a

global approach and we are we are putting a black box around you are only worried about what

happens between when we started out and when we ended we are not really worried about how

this  change  happened  right  that  is  very  symbolic  or  symptomatic  of  their  thermodynamics

therefore I should be interested in describing.

The  state  the  initial  state  of  the  system  thermodynamically  and  correspondingly  look  for

obtaining the corresponding thermodynamic quantities for food is described the final state that is

the products well  I  started with mass conservation I  had ρ not and you not ρ is  certainly  a

thermodynamic quantity but you is not  that is a flow quantity right and similarly I can say ρ 0 u

0 square +V 0 ρ and PR but you not is not that is a flow quantity, so is it possible for me to

somehow camouflage the flow and then deal try to deal with only the thermodynamic quantities

the answer is so long as I am going to use m dot okay and treat it as a given and keep in mind

this is related to u 0 right and then we cannot quite treat it as a given okay we do not know

exactly.



So there is a little problem but so long as I am going to couch you not or you ∞ either of them as

a matter of fact into m dot and it is  so nicely it is so nice that both of them can actually get

hidden and aimed out okay this equation will permit us to do that so  I am going to use m dot

whenever I try to get a velocity right and then I am going to write like you not as m dot divided

by ρ 0 u and u ∞ as m dot divided by ρ ∞ so I try to do that then.

So 1 implies do not row ∞ u ∞ squared ρ 0 u 0 squared s you can write this as m dot squared

times 1over ρ ∞ _ 1 over ρ n and that would be equal to so what am I doing I took this ρ0 u 0

squared to the right hand side so I had this difference so I have to take this P ∞ to the left hand

side and I have a P 0 - P infinity right.

(Refer Slide Time: 19:36)

So from this I can write P ∞ _ P 0 divided by 1 over ρ ∞ _ 1 over ρ 0 =_ m dot square okay.



(Refer Slide Time: 19:54)

So very interesting that this analysis is amazing and in my in my opinion okay, what you are

looking for is to go back and look at the goal again we are looking for product conditions given

the you know given the reactant conditions and we just decided that we are by conditions we will

actually talk about thermodynamic quantities right and then we just went through these and then

found that  and P are the thermodynamic quantities so if I were to be able to give ϱ ϱ0and P0 I

should be able to get P ∞and  ∞ this is what I am trying to look for all right and in trying to getϱ

this equation I have already used up the two equations okay the demos conservation.

And momentum conservation what am I getting out of this so if I were to plot and this is the

beginning of some lot of fun that you are  going to have in the coming days right they find out if

I am not going to plot P ∞ on the y-axis and 1 over ∞ on the x-axis now keep in mind one overϱ

 means specific volume so this is like a PV plane right and if I were to now locate numericallyϱ

the value of 1 over ϱ0 and let us say P not all right that is to say I am starting with a modest

pressure for the reactants yeah and a modest  of 1 over ϱ0 t that means like a fairly high density

okay that is what I am starting out with.



And this is my initial condition I am trying to locate for this initial condition where the final

conditions  should  be  and  this  equation  is  basically  telling  me  that  I  can  look  for  my final

condition anywhere along a straight line okay which connects this point to the final condition

with a slope equal to what minus m dot square right now m dot is mass flux there cannot be

negative strictly speaking okay it can be negative only if I if I if I had the flow going back

backwards like this so I am not really thinking about the reactants flowing out of the reaction

zone I am looking at the reactions always reactants always feeding into the reaction zone.

So I am thinking m0 is positive that is okay but m dot squared should obviously be positive so

that is not even worry about it right and therefore negative m dot squared is going to be negative

so the slope of this line is going to be negative so I am going to be looking for a line that always

is having a negative slope you know that never happens you want to draw a line that passes

through a point and always goes a little bit of a away from that point okay.

So we now push the point to wherever the line goes and then say this is the line along which I am

expecting the final solution to lie right any point along this line is where the final solution should

lie we have made remarkable progress in the last few minutes what did we do we now said given

the initial conditions described thermodynamically by two quantities right we have now zoomed

in on the possible solutions to lie along only one line as opposed to a huge plane right.

Until now we could have actually expected the solution to lie anywhere in this plane but now it is

all confined to just one line that is amazing right we have reduced a plane to but a possible set of

points in a plane to a possible set of points in a line that nice but then there are infinite number of

points in a line just as well as there are infinite number of points in the plane so what is V it is all

infinite number of possibilities right so how do I now pick exactly that solution that that is going

to be lying on this line I need at least some more information I should now be looking for this

line to intersect with some of the line maybe or there must be some way by which I can choose a

particular point along this line.

So we have exhausted mass conservation and momentum conservation together to now get a line

we now are looking for a energy conservation to help us with trying to locate a point along this



line right so this like a very step-by-step thing from a plane to a line from a line to a point is what

year you are going so this  line is what is called the Rayleigh line you and the slope of the

Rayleigh line is essentially  MDOT squared I am not saying negative end up end up MDOT

squared because I have already taken the negative sign an account and drawing the line that is

inclined from left top to right bottom okay so the slope of the line contains so what does MDOT

signify for us it's actually the flow the flow information is hidden in MDOT.

And the slope of the line indicates how fast it is right if the if the line were very shallow that

means its MDOT is quite low if the line we are steep MDOT is high all right so that is going to

tell us how fast the flow is or how slow the flow is Internet's going to tell us how fast the way

were propagating to still reactants or slow okay but there is something that we do not know okay

so keep that in mind, so now you look at the energy equation to get initiative the energy equation

the energy equation reduces to H0+1/2 u 0 squared equals H ∞ +1/2 u infinity squared let us call

this 3 now of course you know have to start thinking about what these hitch knots.

And hitch H ∞are so notice note that note that P 0 equals ϱ0 R0 T0 t P ∞= ,∞ or ∞ these areϱ

specific gas constants and these are going to be specific to the reactant mixture for or not and the

product mixture for R∞ right so which means we should know what is the molecular weight of

the mean molecular weight of the reactants and mean molecular weights of the products which

means we need to know the composition of the reactants and composition of the products which

means we know why I why I knots but we have to actually get why I ∞ right so how do you do

that we have to integrate the species conservation equation they try to try to do that so trying to

relate so as well as well let us just I do  not do that immediately.

So before we do that let us just say no again also H0 = σ I= 1 to n why I 0 H I 0 where Hi-Δ HF I

superscript 0 plus CP i-- t not assuming calorically perfect gas if not you have to write integral T

superscript not 2t CPI DT okay T superscript not - t subscript not K CPIDT is what you should

write and then similarly H∞ is σi=1to n why I ∞ H I ∞ H I ∞y =Δ hf i superscript not plus CP i--

t ∞ okay so in on the cases we are assuming calorically perfect gas here to simplify things for us

ourselves here you can see that the fate of H∞ not only lies 14 knowing T ∞ given T0.



But also in knowing YI ∞ is given YI 0 okay. And the reason why I was talking about YI∞ is in

relation to YI0 was to get the mean molecular weights for the reactants and the products and that

is because we wanted to relate the t0 to p0 and ρ0 that is what we are comfortable with okay, we

are comfortable with p0 ρ0 or P ∞ and ρ∞ we wanted to write T0 and T ∞ in terms of the pressures

and densities rather than keep them as temperatures for which we wanted to use R ∞ and R0 and

that involves molecular weights and involves YI and so on that is what we were talking about but

we also find that HI is require Y I for performing your H0 and H ∞.

(Refer Slide Time: 30:59) 

So we will try to relate trying to relate yI ∞ to YI0 right, how do you do this? So let us now try to

try to integrate the species conservation equation across the discontinuity right so if you now try

to  equate  the  species  conservation  then  the  species  conservation  the  species  conservation

equation leads to notice what we had, we had we had for the species conservation the convection

term and the diffusion term and the reaction term okay, the convection of the diffusion terms

involve derivatives. So they do not really exist here and what really it boils down to is to say that

simply your W I0 = 0 and w I ω = 0 right.



Now you could recall that you can say W I is ω K X = 1 to M W IK therefore or yeah Wik and

wik = WI µ I k’’ - µ IK’ ω k so what this means is if you not trying to take these two together

right then this simply means what you are saying is ω K 0 = 0 and ω K ∞ = 0, this is what it is

going to of course you can say that for both of these you can say K = 1 to M for each reaction

right.

(Refer Slide Time: 33:56) 

This is for a multi step reaction nowhere we have a little problem which is this is alright this is

more or less alright because your reactions at the end of the reaction zone are going to come to

completion that is how you actually figure out that the reaction zone is over right and how did

they come to completion because you actually consumed the reactants in those reactions, so if

you now look at reactant profiles they would actually go to zero or at least one of the reactants

will go to zero.

And if the reactant concentrations were present in these terms right through the law of mass

action you know that the reactant one of the reactant concentrations goes to zero that means if it

is if it is come if either of the reactants that are happening in reaction goes to zero concentration

then the reaction is complete is what you are basically thinking about.



But here as far as this is concerned ω K0 the question is it zero, on other words are you having

reaction rates equal to zero here I thought so because I thought all these this is the region that

contains all the reactions right this is the region that is not supposed to contain any reactions is it

right we have all the reactant concentrations yeah and then we also have a temperature T0 at

which they can react.

So strictly speaking there is nothing that is really stopping reactants at like let us say a reactants

temperature or say room temperature there is nothing that is stopping them from reacting it is just

that they have to circumvent the activation energy and it's take a longtime, so the reaction rate so

very low but it is not necessarily zero. So this is going to be some very low number maybe10 to

the -14 but it is not zero right.

So while we are now stinking that you do not have any gradients over here that is because we are

not really taking into account the heat conduction that is happening because of chemical reaction

so there is like a Mile gradients possibly but you are disregarding that saying that there is like a

line that we are drawing and saying no gradients on the other side simply we similarly we are

also drawing a line saying no reactions there but that that is not going to numerically work out.

So this is this is what is termed as in most combustion problems this is what is called as the cold

boundary difficulty in other words if you want to supply an upstream boundary condition on the

cold reactants in most combustion wave problems you will find that it is not really strictly true to

say that it is not reacting at all right.

But then we suppose and this is this is primarily because of the way the Arrhenius law works the

Arrhenius  law is  essentially  an exponential  dependence  on temperature  for  the  reaction  rate

constant and that that is not really going to zero identically as you go to room temperatures of the

reactant temperatures it still exists at a finite nonzero infinitesimal maybe value. 

So we circumvent this in instance in some sort of an ad hoc manner okay we do not we do not do

this  perfect  way  of  integrating  things  across  the  jump  and  all  that  stuff  for  the  species



conservation we could do this for the mass conservation we could do this for the momentum

conservation we could do this for the energy conservation but the species conservation is not

going to actually lead to this the reason is this all these are actually rate equations okay.

So this is actually a mass flow rate this is the momentum flux rate and this is a energy rate and

similarly this is a species flow rate is what the species conservation equations is all about, but

what we are primarily looking for is only the composition we do not we are not really worried

about the rate of change of composition or the rate of flux of composition and so on. So we could

actually  fall  back  to  thermodynamics  instead  of  looking  at  rate  equations  like  species

conservation equation in this case.

So  typically  we  sort  of  been  canalize  in  this  do  not  worry  about  this  and  then  resort  to

thermodynamics and in thermodynamics we have seen how the product concentrations actually

can be worked out given the reactant concentrations but the caveat there is we are assuming

equilibrium right. Whereas in all these rate processes that we are doing we are not necessarily

assuming equilibrium that  means we are allowing for changes to happen and it  manifests  in

saying the reactants themselves are undergoing change even far upstream of where you thought

with the reaction zone right.

So strictly speaking it says no equilibrium, so we wink our eyes on that we just say do not worry

about it we were assume equilibrium we can try to get her wire infinities from an equilibrium

condition  and  recall  what  we  did  when  we  when  we  did  that  we  started  out  with  atom

conservation  on  either  side  that  was  like  balancing  the  chemical  reactions  four  additional

equations  that  we needed for extra unknowns on product,  products we assumed hypothetical

partial formation equilibria and so on so he had ways by which you could you enumerate the

wire infinities assuming equilibria so that is what we do.



(Refer Slide Time: 40:11)

So we overcome this by supposing equilibrium condition for the products and obtain Yi infinity

given Y0 under that framework okay, already done before okay. So let us suppose that we let us

not make a big fuss about this we know how to do this we can proceed on dealing with the

energy equation so we have the energy equation integrated across the jump and we call this 3 and

of course there are as well we have U02 and we do not like to see U0 we want to replace it with

 right. M



(Refer Slide Time: 41:39)

So we use 1 in 3 which means h∞-h0=-1/2M2 1/ρ∞2-1/ρ02 because we can we can write U02 as

M2/ρ02 and then you can also use you can you now notice that you have 1/ρ∞2 -1/ρ02  can be

written as 1/ρ∞+1/ρ0. 1/ρ0 and then you can find out  if  now you say this  taken over there

-M2.1/ρ∞- 1/ρ0 is P∞-P0 so you could try to use that so h∞-h0=1/2 (1/ρ∞+1/ρ0)P∞-P0 this is

good because this completely gets to get rid of  right.M

Previously we had this Rayleigh line that was that could actually change its slope depending

upon the  but now we have a truly thermodynamic relationship no flow information at all thatM

is great because this is actually related to thermodynamics in some sense okay, if you start out

with certain energy content in your flow in terms of a mixture of heat of formation and sensible

enthalpy right, you will get your reactants, your products to now have so much enthalpy which

will have a another combination of heat of formation and sensible enthalpy right.

That is essentially what does means, so we can we can now furthers ay well let us now write this

as in fact this is this before we do that let us now in fact this is what is called as the Rankine

Hugoniot relation let us just try to do this a little bit more next couple of steps is going to be a bit

clumsy but let us just bear with it and see what happens, so if you now write your h∞ as this and



h0 as Yi,  Y0 hi0 and then you have to write this  as ∑ i= 1 to n, Yi∞  ∆hfi0 0+∑= 1 to n

Yi∞CP∞T∞ R should be CPi - ∑I = 1 to n Y0 ∆hi superscript not +R would negative again.

∑i=1 to n Y0 CPi T0 now let us call what happens, now so let us now call this as our h∞0 and let

us call this is h00 why would you call this h∞ not h00 not because they are actually standard

heats of formation of species I weighted by the product composition here this is weighted by the

reactant composition, so this superscript not in both the cases actually indicates standard heats

standard conditions and the ∞ and ∞ not basically means you are waiting with respect to product

composition and reactant composition respectively.

So this is equal to h∞0-h00+Cp∞∞-Cp0T0 why would you say CP∞ because T∞ can be pulled

out of the summation so ∑Y∞ Cpi is CP∞ right, here you are going to get so this is CP∞ and this

is CP0 so it is essentially the compositions that are designing these terms rather than the heats of

formation and heats of formation or the temperature there so this is what this what you started

out with the left hand side the right hand side can be written now so this is equal to ½(P∞-P0)

(1/ρ∞+1/ρ0) right okay.

(Refer Slide Time: 47:30) 



Now I told you we do not we do not like T's temperatures you want to write this thing right

things in terms of pressures and densities so we use our equations of state applied to the end

conditions and if you do that and you know in one more step we will hit a point that is ready for

us to draw a curve that will intersect with the Rayleigh line and try to get us a solution.

(Refer Slide Time: 48:07)

So  γ∞  R∞T∞/γ∞-1  so  CP  is  being  written  as  γ  or  γ-1  r  basically  –γ0  R0,  T0/  γ0-1

-1/2(1/ρ∞+1/ρ0)(P∞-P0) okay, so you try to take this to the right hand side to the left hand side

and this term you will now take to the other side with a negative sign so we now call this equal to

-h∞0-h00 and we want to call this q right, so the negative of the differences in the standard heats

of formation weighted by the product composition.



(Refer Slide Time: 49:20)

And the standard heats of formation weighted by the reactant composition is essentially what we

are saying as the heat released new to chemical reactions in this right so this is exactly what we

talked about previously as well. So there is the heats of formation the difference between those is

the one that is actually giving rise to the chemical heat release so we will we will just write the

next step and stop.



(Refer Slide Time: 49:46)

For the day so if you now write your R∞, T∞ as P∞/ρ∞ because that is what we are looking for

so P∞/ρ∞-γ0/γ0-1 P0/ρ0- of course keep this equal to q, this is now clean because it is now

coming back to within pressure and density you are not really having any temperatures anymore

now for just simplify if  γ∞=γ0 this is not very bad because γ are typically about 1.31, 41.2

whatever, so we get γ/γ-1 and P∞- sorry you divided by ρ∞-P0/ρ0-1/2 (1/ρ∞+1/ρ0) P∞-P0=q we

will just start from exactly this point when we meet again this is the equation 5.

And what I want you to think about is how is this curve going to look like in this plane that

means given your P0 and 1/ρ0 look at this curve to find out how in this plane of P∞ ρ and 1/ρ∞

this curve going is going to look like, have a good weekend.
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