
Indian Institute of Technology Madras

NPTEL

National Programme on Technology Enhanced Learning

COMBUSTION

Lecture 44
Droplet Burning

Prof. S R Chakravarthy
Dept. of Aerospace Engineering IIT Madras

So this is where we are the droplet burning problem where we got the solution for β which is the

Schvab’s Zeldovih coupling function in terms of αT and αo the thermal the enthalpy and this is

the oxidizer mass fraction in the ambience in terms of ξ works ξ is actually a non-dimensional

radius which is actually the inverse of radius like as radius increases ξ going to decrease okay.

And then we are looking for boundary conditions  and also an interface  condition because  ξ

involves m. which is unknown and that is what we are trying to find out so the first thing that we

want to do is to actually look at the interface flux boundary condition at the droplet surface and

we are trying to actually form β which means we have to look at what happens to αT and α0

what we are doing here is to actually look for what happens to α0.

So if you now look at how what happens to Yo / νo will give you what happens for α0 and then

we need to look at what happens to αT which means we have to look at the energy flux balance

at  the  droplet  surface interface  right  so as  far  as  that  is  concerned if  you now look at  this

basically a mass balance at the droplet surface based on convective flux at a diffusive flux.
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As far as see the energy balance is concerned.
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What we can understand is now if heat conducted heat conducted into the droplet must be just

sufficient and I will explain what is meant by just sufficient pretty soon but sufficient is what we

should start with sufficient to vaporize the fuel leaving the droplet that is to say if you now have

a flame with a flame temperature and then the heat gets conducted in words radially inwards the

heat  conduction flux at  the surface should be equal  at  least  to  the rate  at  which the heat  is

required for it to vaporize right.

And that is what is meant by saying just sufficient or at least sufficient that is to say if you if you

have excess heat that is being conducted part of it in fact bulk of it is going to be taken by the

latent heat of vaporization to vaporize the droplet into vapor and then you will have a further

temperature gradient for the temperature to vary within the droplet okay now if you think about

very small droplets what happens is you have a very quick thermal equilibrium that happens

within the droplet.

So the droplet is nearly it pretty much the same temperature everywhere within with hardly any

heat flux that is going on because with if you do not have any temperature gradients you do not

have any heat fluxes so essentially the droplet is looking forward to only that much heat that is



by  conduction  that  is  required  for  it  to  vaporize  okay  and  the  data  clip  that  is  a  kind  of

equilibrium that is attained and this is reasonable.
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So what this means is 4Πr 2 k dT/ dr at r = rl = m . L.
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Now this is in some sense very similar to the conductive diffusive balance that we have gone

through this is the diffusive part this is the convective part except what is important here for you

is you have this is simply a m. times Yo okay that is like the mass flux of the oxidizer that is

conducting inward in the space that is vacated by the droplet regression okay that is what that is

what this dictates but here this convection is actually based on the latent heat of vaporization.

So in other words you need to have latent heat of vaporization times the rate at which the droplet

is regressing of all which is the same as rated which the gases are issuing out of the droplet

surface.
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So this is this is pretty much the same of course we are we are neglecting a few things here

neglecting radiation let us say significant effect wherever you have phase interfaces some we be

the notice this when we were adopting the Schvab's Zeldovih formulation with the my with the

eleven assumptions and we ended neglect the here heat flux due to radiation and then at that

point we noticed or we pointed out that radiation can be neglected inhomogeneous system but

not in a heterogeneous system.

Heterogeneous system meaning when you have multiple phases okay physical phases so here we

have a phase interface between liquid and solid gas where a radiation could be pretty important

but of course we neglected for simplicity.
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So neglecting radiation and kinetic energy we are not worrying about this little the kinetic energy

that we are going to have for the vapors that are coming out at a certain velocity because of the

droplet regression that is significantly small, so this is reasonably okay to neglect it now L of

course is the latent heat of vaporization they did not heat of vaporization per unit mass is the fuel

at the temperature at TL.
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Let us say that is adopted surface temperature TL as I said if the dope that is reasonably small and

you have a thermal equilibrium within the droplet the temperature is going to be pretty much the

same at TL whatever is the surface temperature is going to be the same uniformly throughout

within it at the moment we are not really we interested in what is happening with them they drop

that and that there is a reason why we are assuming this just sufficient that means we are not

going to have any further heat conduction after the latent heat has been removed okay.

So now let us of course we have those number le = 1 which is k /ρ CPD and of course with the

other thing that we also do is take T0 = TL for convenience and this is not very difficult to swat on

swallow because we have seen this before if you now take a different value and then you still

insist on T0 you can have two ∫ and we find that these things are actually showing up wherever

you have αT or β showing up it is all in derivatives.

Therefore a constant addition is not a problem so they can we can do this  so therefore this

condition then is now going to translate to because we can now take for example course take the

m. down here and then k can be replaced by ρ CPD right so you replace k/ ρ CPD and of course

Cp can be stuck with the temperature and then you have 4Πr2  / m. coming from the other side



and then we look at how ξ is defined and keep noting that 4Πr2  roadies in the denominator and

the way ξ goes is inverse of ρ.

So we should for example they got a negative sign here right and similarly when you now try to

write this in terms of the non-dimensional independent variable oxide you should you should

have a d / d ξ ∫ T0 to T Cp dT = - L that is a reason why you got the negative sign so if you now

try to say I will divide this by Q and this by Wo νo which means I go back and divide this by Wo

νo and this by Q I will have wherever I have a Yo I will have a αo and wherever I have ∫ T0 to

TCp dT / Q.

I will have a αT then subtract one from the other to get αT – αo which means we get the β right

so putting the two flux balances at the droplet interface together we get dβ / d ξ of course I

should go back and write this at L so dβ d ξ at L = -L / Q – Yo L/ Wo ν o.

(Refer Slide Time: 10:41)

Alright now this is the interface condition in addition to this we need to have the regular delay

boundary conditions right so the deliciously boundary conditions at the at the boundaries to the

domain or the.
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Little a boundary conditions domain or we should say at r = ∞ ξ = 0 okay at r = ∞ ξ = 0 right and

what would that mean we would say what would be a β your β would be whatever is α TNR for

at r= ∞ which means whatever is the temperature T ∞ right at at far away and whatever is Yo ∞

so for example if you have air as your ambience your y 0 ∞ will be like 0.23 because only about

23% by mass is going to be oxygen the other one the rest is going to be nitrogen.

So you have a diluents present in your Amiens in any oxidizing ambient which can be taken into

account you can also take into account the ambient temperature and keep in mind if we do not

have to worry about a combustion heat release then we could still solve the evaporation problem

if your T ∞ is higher than TL all right and that is going to basically mean that you have heat

conduction simply from the ambience not necessarily from the flame.

So the T∞ is going to play a role and as a matter of fact you know this is actually the sensible

enthalpy term and this is the heat release term so this is already showing up as a competition

between the two okay so we will see distinct lot more clearly as we go along but essentially what

it means is β can be = β∞ which is α T∞ - αo ∞which is nothing but T0 to T∞ CP dT /Q – or



should I say + Yo ∞ / Woνo that is the one boundary condition at r =rl we are kind of coming in

words because that is how ξ increases from 0.

So ξ is now going to be = some ξL which is saying ξL = rL ∞ rl to ∞ right and so ξL and β will

have some value βL which is nothing but α TL - αoL which is ∞T0 to TL CP dT / Q + Yo.

(Refer Slide Time: 14:17)

Wo Νo we have already seen that if you now take T0 =TL for convenience this would not have

any contribution but that is alright let us just at the moment were worried only about βl that is not

worried about how it is exactly defined we will ultimately see that what matters is not exactly

each of these β∞ - βL in which case we can now put these things together and these ∫s will now

go together and then you will get an ∫ goes from TL to T∞.

Okay so the T the T superscript not gets out of the way anyway so good that means we are now

ready to attack the solution better will be armed with these so let us do one by one so let us say

how do I number it is yeah I think I should I should mention what is ξl here for the record where

ξ l is m . ∫ rL the ∞4 Π r2 ρd to the negative 1 dr okay and I think we should probably call this as

to right.
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So we call this is one and okay now.
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So the first thing we can do is at the r = rL βL = a + b e -ξL r= ∞ β∞ is simply = A + B because ξ =

0 so e to the 0 is going to be 1 and subtract we get rid of A and actually you know by now you

should get the idea of what the drift is we are not really interested in solving for α mean bit as it

off okay that is done that is not really our problem a problem is to find ξL so that from ξL we can

get an idea of m . 

And m. is what we are basically looking for we are not looking for the actual profiles so the real

problem is what is the rate at which the droplet is shrinking okay everything else is a detail and

so we will solve the we will keep our focus on the problem all these details like how exactly β is

varying that means how is the temperature going to vary how is oxidized a concentration going

to vary and all these things are all exam questions or PhD qualifying exam questions and so on

okay.

So that is for you to figure out but we will we will focus on our problem that means at the

moment  we can  just  subtract  these  two get  rid  of  the  A we are  not  going to  bother  about

evaluating it for ourselves and we are simply going to get B =β ∞ - βL + Be - ξ L right that is true

so B= β∞ - βL + B.



Right then how question is what is Bβ ∞ - βL but β∞ - βL is nothing but you just have to this is

this is β∞ this is βL so this is β∞ this is βL subtract one from the other so you get Σ K=1 to n.

(Refer Slide Time: 18:40)

Yk ∞ TL to p ∞ Cpk dT that say that is a fancy way of writing CP simply you could have taken

the Yk inside and but you want to show the ∞ very clearly /Q and the reason why we are not

really worrying about YkL is because as I said here if TL= T0 this is not going to contribute right

and + Yk sorry Y from Yo∞ - YoL / Wo νo right so that is what we get then we have to use the

interface condition.

So what we have now is we have B = this + Be to the – ξL with which you can evaluate B all

right but is we are not really bothered about as I said evaluating be we are we are not interested

in evaluating a as well you are not interested in finding β as what we are really interested in is to

apply the interface boundary condition, so that we can even eliminate B okay so fortunately the

interface boundary can endure interface flux condition put together in terms of β has it in terms

of derivative.



So if you have it in terms of derivative A automatically drops out you try to take a derivative here

A does not even show up B shows up okay and between that and this we will eliminate B as well

okay that is it what we are going to do so using the interface flux balance right we get Be - ξL = L /

Q  dβ ξ is going to have a -Be to the -e  ξ  right and evaluated at L right so we should have a

negative sign.

(Refer Slide Time: 21:39)

But it also had a negative sign here which I am going to turn it as positive right, so we now have

this as L / Q / + YoL / Wo νo if you call this as your 3 okay I guess this is your 3 and this is your

4 then what you do is we now use a 4 and we now use 4 and 3 together in order to get e to the -

X ξ and use what is the definition of ξL that is what we do.
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So putting 4 and 3 together and using 2 right we get ξ L = natural logarithm you got the natural

logarithm because between these 2 if you now try to get rid of B you will be working with e -ξL

okay and if you now try it extracts I will out of it you will get a natural logarithm okay so natural

logarithm of 1 + Σ K=1 to n Yk ∫ ∞ TL to T∞ CPi Dt/  Q + Yo∞ - YoL / Wo νo so that is coming

from here / L/ Q + Yo L/ W Νo that is coming from here okay and this 1 + was coming because

you had a B and a B there.
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So you could have a 1 + so that is that is the mathematics and then in this you now views 2

because ξL is this definition so you now get a in dimensional form.
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In dimensional form m. is going to be1 / ∫ rL to ∞ 4 Πr2 ρd to the negative 1 dr natural logarithm

just for the record got to write the whole thing again 1+ Σ k =1 to n Yk ∞ PL / T∞ CPi dT/  Q+

Yo∞ - Yo L / wo ν0 /L stop we could do a little bit of manipulation if you now try to multiply Q

throughout both numerator and denominator you could write this as + Q and this would be +

QYo L / Wo ν0 of course in the final videos we can edit out this time it took for it to write A and

then we can just show the final expression written again.

And here we will  basically  point  out that  we are multiplied the numerator  and denominator

throughout by Q so that the Q shows up here and here instead of at the bottom of this in this so

that is a final expression for m. and as usual we do not understand this okay, so we get some

complicated  looking expression which  just  does  not  make sense we started  out  thinking we

wanted to get the d2 law okay the d2 law is essentially saying that if you know or looking at the

rate at which the evaporation happens the time of evaporation is proportional to square of the

diameter.

And we notice that the square of the diameter is going to be sort of like the surface area and we

also then notice that if you now look at the m. the mass flux the square of the radius shows up



which means the square of the diameter shows up and this in fact is the surface area 4 Πr2 or it is

quite a surface area of the droplet so all that seems okay and now we got n m. how in the world

are we supposed to get the d 2 law from this okay.

So or how are we supposed to now find out how the d2 varies with time for the droplet regression

okay we have adopted a quasi-steady assumption by which in the instantaneous snapshot at a

particular  time  the  m.  is  like  this  without  any  time  dependence  any  further  okay  the  time

dependence if you have gotten rid off is the smalltime scale that that it takes for the gases to just

diffuse in convent at a particular snapshot freeze-frame time.

And from this time for you to get to the next time when the droplet regresses significantly takes a

lot of time and then will now look at the bitch now and then do this balance and then figure out

what the current m . as and so on that is what we are trying to do so if you want to try to

understand this further it is it will be helpful if we do some more simplifications okay so let us

try to do that.

(Refer Slide Time: 28:33)



So  let  us  try  to  do  some  simplifications  here  the  first  thing  that  we  will  say  is  Yol  is

approximately = 0 that means we are saying that the droplet the deoxidizer as it diffuses all the

way to the droplet surface is pretty much of 0 concentration or put it another way all the species

that you have at the droplet surface is going to be mainly fuel vapor so if all of it is going to be

completely displaced all oxidizer.

So you do not really have any oxidizing species this is one way of looking at it in a in a mostly

evaporation situation in a combustion situation it is not more convenient because we expect that

the fuel vapor and the oxidizer vapor are going to diffuse against each other radially and meet at

stoichiometric proportions where the flame is and then get consumed there right so if you if you

know took a magnifying glass and looked at this particular sheet we should now be able to find

out how these things gradually decline the oxidizer constantly.

The fuel concentration gradually declines up to this flame and then rapidly declines because of

consumption and the oxidizer concentration gradually declines as you go radially inward because

of diffusion and then rapidly decline across the flame right.

And therefore at the droplet surface you are not going to get any oxidizer at all so Y0L can be

assumed to be more or less 0 without much of a problem the exception see when it anytime you

make a assumption which is simplifying you have to look at how good it is or when would it not

be held and the answer is this is not really quite true near extinction conditions that is when the

droplet is going to actually extinguish right you have a rather weak flame and you have ample

opportunity for the oxidizer to diffuse past the flame in spite of going through reactions and

consuming getting consumed quite a bit because it is not getting completely consumed right.
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So  yeah  this  is  mostly  true  a  particularly  in  combustion  situation  except  near  extinction

conditions so that is one simplification what would that give me that will get rid of the YoL here

right that we get rid of the YoL here so it is kind of like we could send this to a hairdresser and

get it to be nicely dressed up and look like a very simple expression right so that we are trying to

get rid of some of these terms that way.
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Let us also assume that Tl  = TB which is the boiling point of the liquid that is a simplifying

assumption in reality we have to actually look at something called a saturation temperature and

so on which depends on the ambient what you call the ambient composition of its vapor and soon

so you have to look at vapor pressure balancing the actual pressure and all those things now we

let some very worried about all that will simply say TL the droplet the temperature is going to be

the same as the boiling point.

And let us assume that ρD is a constant which is = k / CP okay because L = 1 and suppose CPi  =

constant = CP.



(Refer Slide Time: 33:00)

All CP are the same and it is constant right so make these assumptions and what do you have we 

get so with which we can now try to evaluate this ∫ also right so ρD gets pulled out of the ∫ and 

you can you can you can integrate dr / 4 Πr 2 right that is not a problem and then substitute the 

limits you get m .= 4 Π kr L /CP that is what ρD has.
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Now become times natural logarithm1 + CP can now evaluate the ∫inside as well as simply T ∞-

TB + QYo∞ / should say we have a Wo ν0 /L right okay you still have some expression but this

is a little bit more manageable we can we can try to understand something more let us just think

about it for a minute okay what this means is this is the sensible enthalpy okay for the gas going

from the boiling point of the droplet to the ambient temperature.

So this is the sensible enthalpy rise of the gas that is coming out of the droplet should actually be

corresponding to the heat of combustion so for the moment let us not worry about the heat of

combustion okay let us suppose that we are thinking about evaporation that means you have an

ambient hot gas that is trying to evaporate the droplet and that means it is simply giving rise to a

sensible enthalpy rise by L so the L is what is actually is the latent heat that is required first of all

for you to vaporize.

And then the next thing is you have to raise the temp sensible enthalpy okay so the m. is dictated

by how much you are able to evaporate versus how well you are able to rise a sensible enthalpy

of whatever we have evaporated if you now throw in combustion you now have this term in

addition okay so the heat that is available to you goes first to evaporate the droplet and second to



raise the sensible enthalpy okay so you can see how these three processes essentially heat release

that is available to you during combustion can go on to raise a sensible enthalpy in competition

with evaporating the droplet okay.

So the this is what is actually dictating this m . now what we are interested is in trying to find out

what is the relationship between or how is this rL going to change in time okay that is what we

are really interested in so for this purpose we can we can see that.

So note notice that m . is now linearly proportional to rL right so say m. = k’  r L the reason why

we are using k’ k is reserved for the evaporation constant in the d2 law and that is what we are

trying to deduce okay we are trying to reduce the d 2 law and therefore we want to see how what

is the dependence of the evaporation constant on the system parameters namely like the ambient

gas composition ambient gas temperature the boiling point of the liquid the latent heat of the the

delivered and so on.

Right so we want to know what the k is and so we now keep this as the k’ so where k’ is = accept

or l we have to write everything else which is 4 Πk / CP natural logarithm 1 +CP T∞ - TB +

QYo∞ / Wo νo/L right so keeping there is a k’the next few minutes we are simply going to ignore

all this all the stuff and go and basically say m. is = k’ rL and let us see what that means right.
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So m . m . on the other hand is negative 4 ΠrL2  ρL d rL /dT right this T is now at the time scale

of the droplet regression it is not a shorter time scale of the gases equilibrium in diffusion and

convection so this is the kind of time that you are looking for in the d2 law so this is now equal to

k’ rL which means we can now cancel the rL 2  one of the rL and rL2  with this and from this we

can now write rL drl = negative k’ / 4 Π ρl dt all right then just go back and write this with let us

say rL0 to rL any rL starting from T0 to any T and that is now beginning to show up as the d2

law.

So this is 1/2 rL2 - rL0 2 or okay let us just keep it that way and we have a negative sign to fix

things so we have a 4 Π ρl t- t0 and of course now this negative sign will allow us to flip things

because rL0 is actually greater than order therefore we want to keep things positive and keep in

mind rL is nothing but dl over 2 so rl2 will be dl 2 /4 and so the 4 and 2 are going to get together

to make an eight and then of course you have a 4 Π that is going to go away and k’  also has a

4Π.

So do not get mean hurry to cancel that with a 8 okay so dl0
2 - dl2 i= 8k’/ 4 Π ρl t – t0 so now it is

beginning to look like the d2 law bye couple of minutes in about 10 minutes ago this did not look

like the d 2 law at all okay but that is the d2 law there and so we have the d2 law.
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So with the evaporation constant k right so what is the d2 law just for the sake of completeness d2

dl0  2 = k times t - t0  k = say of evaporation constant k right where k = these are put things

together 8 k’/ 4 Π ρL and then of course you have F so you just divide this by 4 Πρl and then pull

through in an 8 and you are simply going to get a 8 k /ρl CP natural logarithm 1+ 1 /l CPT∞ -

TB+ QY0 ∞ / Wo ν 0.
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Right and as I said all the dependences that we are looking for over in the evaporation constant

you can also use this for evaporation as well as combustion all you have to do is neglect the heat

of combustion for getting the evaporation if we want to keep the combustion then keep the heat

of every heat of combustion and you will get an additional  evaporation rate okay so that means

because the combustion it burns faster it regresses faster that is what it simply means so but we

should stop doing droplet burning and we will see what else we need to do next week.
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