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Modeling A Signal Transduction Circuit

Hello, welcome to the first module of last week of this course. In this module, we will model a

small signal to signal transaction module and analyse that and its behaviour will be analysed, so

let us start with the simple signal conduction circuit that we will analyse today. 

(Refer Slide Time: 0:55) 

Here in this slide, I have shown the figure to represent that circuit, X is a Kinase, suppose. X is a

Kinase and X is produced through a process which is controlled by S in input signal, and X

controls phosphorylation, X is a Kinase so it’s the enzyme, it controls phosphorylation of Y to

YP. This phosphorylation is reversible, so YP get dephosphorylated into Y by a phosphatase E

and  YP is  a  phosphorylated  protein  Y and  once  it  is  phosphorylated,  it  becomes  an  active

enzyme. 

So now it is an active enzyme, and this active enzyme promotes degradation of X, that’s what I

have shown by a arrow here, so what we have, we are giving a input signal S, then induces

production of  X which is  a  Kinase and that  X Kinase phosphorylate  Y to YP, this  stage of



phosphorylation  is  very  common  in  signal  conduction  pathways  and  this  stage  of

phosphorylation is a reversible process so if you have a Kinase, there will be a phosphatase to

reversibly get it back from YP to Y and that phosphatase here shown as E. Now, usually in the

phosphorylate system of signals transaction, usually the phosphorylation increases the activity of

the molecule or it decreases. 

In this case I have considered Y is inactive and when it is phosphorylated by X, it becomes YP

and  this  YP is  a  active  form and  this  active  form  promotes  degradation  of  X,  so  what  is

happening here? S is promoting production of X, X is promoting formation of YP, and YP in turn

is increasing (deg…) degradation of X, so that means I have a negative feedback here. X is

producing YP, YP is degrading X, so that means I have a negative feedback, so the network or

circuit shown here in this figure is a simple negative feedback circuit which can be triggered by a

input signal S and we want to analyse how the input will affect the output for this particular

circuit, so before we move into further, let us create mathematical model using ODE for this

system. 

How we will proceed (uh) before we proceed, let me assume that this reversible state, this Y to

YP, I have two reaction, Y to YP controlled by X, and YP to Y, controlled by E, let us consider

this step, these two steps are following Michaelis–Menten kinetics. If you remember in last week

in a particular module, we had discussed where I have a reversible reaction system where both

the reaction follows Michaelis–Menten kinetics, so in that module we have learned how to write

the ODE for that type of simple reversible reaction. 

We will use those concept here in this model, we have included some other molecules here to

create a circuit,  so the first thing is, I am considering this reversible reaction of Y to YP as

Michaelis–Menten… as per Michaelis–Menten kinetics, so let us start writing the ODEs. I have

three dependents variable X, YP and Y. I have three dependents variable X, Y and YP. S is input

and this is constant. S is not changing with time, so as I have three dependents variable, I have to

write three ODEs. The first one is for X, concentration, and I am writing ODE to represent rate

of change of concentration of X. 

So DXDT is equal to KS into S, KS is the rate constant as shown here, into S, so that is the term

representing production of X minus KD into X into YP so this last term, KD into X into YP is



representing the degradation of X. Now the second ODE is for YP, that is DYPDT is equal to

remember,  I  have  considered  this  Y to  YP trans  change as  a  reversible  reactions  following

Michaelis–Menten kinetics so the forward one from Y to YP will follow Michaelis–Menten and

YP to Y will also follow Michaelis–Menten so the first one I have here is the Michaelis–Menten

kinetics, so it follows Michaelis–Menten kinetics, that’s why you have K1 rate constant into X. 

X is the enzyme here, Y is the substrate, Y is becoming YP, so K1 into X into Y divided by

Michaelis–Menten kinetics, KM1 for that reaction plus Y, the substrate concentration, so this first

one is Michaelis–Menten kinetics equation for the forward reaction from Y to YP, the second one

is also Michaelis–Menten. In this is the enzyme is E and the substrate is YP and the Michaelis–

Menten constant is KM2, so these two Michaelis–Menten equations are formulations are stuck

together to create the ODE for YP. Now I am left with ODE for Y. 

Now if I consider that total amount of Y i.e. YT is equal to Y plus YP and if I consider that

remain equal to constant, then I can replace Y in terms of YP, this type of reduction in number of

variable, we have tried earlier, considering here a conservation of total amount of Y, a part of Y is

free Y and another part is phosphorylated Y, so summation of these two is constant and equal to

YT. So the second equation I can replace, the second equation I can rewrite in this form, DYPDT

is equal to K1 into X, in place of Y in place of Y I am writing YT YP because YT is equal to Y

plus YP that means Y is equal to YT minus YP, so that’s what has been written here. This is the

first  Michaelis–Menten term.  Second one remains  same as here in  the ODE2, so this  is  the

second Michaelis–Menten term. 



(Refer Slide Time: 8:26) 

So if I clear my board a bit, what we have considered? We have considered conservation of Y in

terms of Y and YP, so I am left with two ODEs. This is the first ODE1, that is called X and the

second ODE for YP, I do not require a special ODE, separate ODE for DYPT because I do not

require it, is because Y is dependent upon or express in terms of YP. So I have two ODEs, using

these two ODE, I will try to analyse the behaviour of the system.

(Refer Slide Time: 9:18) 



So let us first try the graphical method, we will try also numerical simulation, but first let us try

the graphical method to understand how the system will behave. So if you remember to draw the

graphical  representation  of  the  system,  I  have  to  plot  phase  plane  plot  and  also  draw  the

nullclines, so let us start analysing the nullclines first. So I will draw, I will try to understand the

X nullcline first. So to get X nullcline, the deep ODE is DXDT is equal to KS into S minus KT

into  X  into  P YP, so  for  X  nullcline,  I  have  to  consider  DXDT equal  to  0,  so  this  is  my

consideration. If DXDT equal to 0, then this whole thing will become zero, so I get KS into X

minus KD into X into YP equal to 0, so I will separate out X and YP on both side… on the sides

of equal to sign, so that’s what I do, I get YP equal to after rearrangement, YP equal to Ks into S

divided by KD into X. It is essentially a hyperbolic equation.

Let us now look into YP nullcline. So to get the YP nullcline, start with the ODE, i.e. the second

ODE representing the (Y…) YP, DYPDT. I will consider here, while DYPDT equal to 0 because

I want to calculate the YP nullcline, so if I consider DYPDT equal to 0, then I put equal to 0 in

the second ODE, so I get this formulation, K1 into X into YT minus YP divided by KM plus YT

minus YP minus K2EYP divided by KM2 plus YP equal to 0. So again, I have to rearrange them

to get YP in one side and X on the other side. 

Now if you look into this relationship, in one module in the last week, where we have discussed

this about reversible reaction following Michaelis–Menten kinetics, we have seen that to get the

nullcline is not so easy to separate out the term, X and Y term and we have to play with trick to

rearrange the term and what we can do, we can rearrange in this fashion. Xequal to I have a

rearranged  term here,  where  YP÷YT and  other  terms  of  KP, just  like  that.  So  this  type  of

formulation we have done earlier and you can rearrange this whole thing algebraically and can

get it.

Now, if you remember from that module, this X versus YP relation, X versus YP relation is

actually sigmoidal. So this function of YP for X is actually a sigmoidal function and the shape of

this sigmoid depends upon the values of KM1 by YT and KM2 by YT and E. If you remember,

it’s we have discussed earlier when KM1 by YT and KM2 by YT, they’re much smaller than 1,

then this  sigmoid behaviour  becomes very steep,  very sharp.  So, we will  now draw these 2

nullclines in the phase plane X versus YP and try to see the behaviour. 
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Let us start with the YP nullcline. As I said, YP nullcline will be a sigmoidal function from the

YP nullcline that we have algebraically calculated. So I have X in the horizontal axis, YP in the

vertical axis and I will have sigmoidal behaviour, sigmoidal function, for example when I take

KM1 by YT, KM2 by YT equal to 0.01, this is much smaller than 1. Then we get a sharp sigmoid

like this,  this  black line.  When I  reduce this  value,  KM1 by YT, i.e.  the Michaelis–Menten

constant divided by total amount of Y 2.1, we get still a sigmoidal curve, this red one but the

sharpness, the steepness is bit narrowed down. 

But when we consider, the Michaelis–Menten constant divided by total Y equal to 1 we get this

green line which is hyperbolic. So this YP nullcline keeps on changing the shape from sigmoid to

hyperbola,  depending  upon  the  ration  of  Michaelis–Menten  constant  for  these  two  enzyme

divided  by  the  total  amount  of  Y present.  Another  parameter  will  affect  the  shape  of  this

nullcline, i.e. E, the total amount of phosphatase present. What I have drawn here, I have kept the

ratio of Michaelis–Menten by the total amount of Y constant at 0.1 but what I have varied, I have

varied the value of E here. 

So when E is small, 0.3 I get this sharp curve, black one. Whereas, when E is bigger, 3, I get a

smooth sigmoid behaviour and the curve shifts towards the right hand side. So you can see, the

YP nullcline will have a sigmoidal to hyperbolic behaviour, depending upon the ratio of KMs



with the total amount of Y present in the system and also depending upon how much phosphatase

you have in the system. 

(Refer Slide Time: 15:26) 

Now, let us look into the behaviour of X nullcline. The equation for X nullcline is this one, we

have deduced that algebraically, you can see easily, it is a hyperbola and that hyperbola depend

upon S, that input signal. Remember, in our system, we’re considering S as a constant, it is not

changing with time, but we can vary the value of S, so if I draw the nullclines in phase plane X

versus YP, then as I change is, I can see the hyperbola keeps on shifting towards the right hand

upper corner, so for this black one, S is equal to 0.1. 

As I increase the signal, S from 0.1 to 1, I get this red curve, which is moving towards the upper

right hand side, and when I increase this first for the ten times, to S equal to 10, I see it moving

further right hand upper corner. So that means S, X nullcline is sensitive to S and remember Y

YP nullcline was not sensitive to S,  the input signal.  Now we will  jot  down both these YP

nullcline  and  X  nullcline  to  identify  the  steady  state.  If  you  remember,  intersection  of  two

nullcline will give me the point of steady state. 



(Refer Slide Time: 16:55) 

So let us look into that. I have drawn this phase plane plot using a MATLAB Tool and I have

kept certain parameter values as constant, and those parameter values are given here. The ration

of Michaelis–Menten constant to the total amount of Y is kept to value 0.1, and I have used the

input signal S at equal to 1 and I have kept the phosphatase at 3. So this yellow line is my YP

nullcline  and this  pink  line  is  my X nullcline.  These  two nullclines  are  intersecting  at  this

position, so this position is my steady state.

As you can see, the intersection can happen only at one position, so that means, in this system, I

have only one steady state possible and this arrow here, which were not very clear in this picture

are actually showing the phase portrait, so I can start from 1 point, I have shown one trajectories

by this blue line, so if I start from here, the phase portrait tells me that the system will move

along this trajectory and eventually collapse here. If I start from this point, at T equal to 0, then I

will follow this trajectory and I will follow this line and eventually collapse at this steady state. 

If I start somewhere here, then I will follow this trajectory and ultimately collapse at this steady

state.  So as you can see,  wherever  you’re starting from the phase plane,  you are eventually

moving in a spiral path and collapsing at the steady state which is the intersection of YP and X

nullclines, so that’s why this steady state is a spiral, same steady state and obviously it is a stable

one. So what I have tried to shown here in this phase portrait plot is that for this system, there

will be only one steady state, and that steady state is a stable one, so it is the mono-stable system.
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Let us further explore the behaviour of the steady state. Remember, the input to this circuit is S,

the signal. What can be the output? I can consider the steady state value of YP as my output, so if

this YP is, steady state value of YP is my output and S is my input signal, now I want to see how

S as I change S, my output changes. So do that, I will again take the phase plane plot and try to

understand. So what I had done here, I have drawn the phase plane plot with X in the horizontal

axis, YP in the vertical axis, I have X nullcline here in the blue line and the YP nullcline is here

in the black line and their point of intersection is shown here by this red dot. 

Now this X nullcline that I have drawn is considering S equal to 0.1 so your input signal is 0.1

and at that time the YP value at steady state is this one, near 0.1. Now, if I change S 10 times, so

S will become 0.1, so remember X nullcline is sensitive to S, YP nullcline is not sensitive to S so

as I change S 10 times, I get a new nullcline, this one, for which S equal to 1 and the point of

intersection is now this red dot, so this is where the steady state is and the steady state value for

YP is now here, so initially the steady state value was here for S equal to .1, now the steady state

value of YP is at this point. That means, my output has changed as I change the input S. 

So now, in this S, my another tenfold change. So from 1, I will make it S equal to 10. So now the

X nullcline has shifted here, the blue line and the intersection point is here by as shown by that

red dot. Now if I draw a horizontal line, then this is my steady state value of YP, when S equal to

10 so that means, when I have changed S from 0.1 to 1 ten times, I have changed from here to



here but when I change from 1 to 10, another tenfold change in signal, I have a rapid change in

YP with very large value. So this shows the input, output relation. Remember in the… as the

phase plane plot is showing, every time I have only one stable steady state and the position of the

steady state is changing as I changing the input signal. 

(Refer Slide Time: 22:09) 

We’ll explore this one further, but not using phase plane plot anymore, we’ll do it using JSim. So

I will advise you to write this code in JSim as shown here in the slide and then try to execute the

way we’re analysing the system here. So I have shown the code, as usual, this code have multiple

segment, the first one is obviously degrading the time, how long you want to simulate, I want to

simulate it for 50 time steps. I have two variables here, dependent variable here, YP and X and

then I have all the parameters. Remember these parameters KM1, KM2 and YT will be critical,

we can keep YT constant at 1, we will not change it much, rather we will change KM1 and KM2,

so the ratio of KM1 to YT, KM2 and YT will change. 

So we’ll keep YT constant, we’ll change the Michaelis–Menten constant in our simulation and

also E, the amount of phosphatase will vary in our may vary in the simulation and see it. Now

obviously we have to declare the initial position at T equal to 0, I have considered X equal to 0

and YP equal to 0 and the rest of these two are two ODEs that we have written earlier. 
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Now, if I simulate the system, I can get this type of result, so I have taken certain parameter

value, the critical parameter, the ratio of Michaelis–Menten constant and total amount of Y, the

substrate is kept at 0.1, so it is lesser than 1 so we’re supposed to get a YP, which is the YP

nullcline which is sigmoidal. I have kept E at 3 to the amount of enzyme as 3 and phosphatase as

3 and input signal I have taken S equal to 1. If I use this parameter value and simulate using

JSim, I get these two type of dynamics for X and YP. As I am starting with 00, at time 0, X was

0, X increases. 

I have a slight because if you remember, the phase plane plot has some spiral tendency, so the

ampere and then eventually it reaches the steady state. Similarly, YP here start from 00, as I am

starting at T equal to 0, YP I have considered equal to 0 and it moves up with a slight ampere and

then eventually I reach a steady state. So here, I can easily see that for both XP YP and X, they’re

reaching steady state after some time, so that means this is a steady state, a stable one, that’s why

the system is moving there and it is expected also because the system is mono-stable.
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Now, let us look into the input, output relation using this JSim model. Previously I was trying to

understand when S is changed, how YP steady state value, the output will change and I was

trying to use the phase plane plot to plot, to understand. Here, I have done the JSim simulation to

understand the similar thing. What I have done, I have kept parameter K1, K2 at one fixed, I

have kept total amount of Y, T, Y as 1, fixed and I have kept the phosphatase amount fixed at 3

and the degradation and K’s rate also kept fixed at 1, what I have varied is that, I have varied the

ratio of Michaelis–Menten constant by YT.  

Now if I keep YT constant at 1, then essentially I have varied this KM2 and KM1 and I have

varied this S at I have taken different values of S from 0.1 to 10, 50, something like that. So as I

vary S, my input signal I measure what is the steady state value of YP, the output using JSim

simulation and then I have made this plot as shown here, so in this horizontal axis, I have plotted

S, the input signal and I have plotted that in log scale because the figure looks better when you

plot in log scale. In the vertical axis, I have plotted the output, i.e. the steady state of YP. 

How do I get the steady state of YP? I have simulated using JSim for 50 time step, by 50 time

step, the system which is steady state and I have taken the last time steps value of YP, i.e. my

steady state value of YP and then I have plotted. Considered this greenish data, where KM1 and

KM2 are very small with respect to 1. So that means in this case, the Michaelis–Menten constant



by YT is much smaller than 1 because YT is 1. So in that case, I have a sigmoidal behaviour. I

have a sigmoidal behaviour with a saturation here. 

Whereas, if you follow this brownish one, where KM1 and KM2 are taken as 1, that means in

this case, the Michaelis–Menten constant by YTequal to 1 because YT is 1, so in that case the

data is this brownish line. So as you can see here, for this particular case, where the ratio of

Michaelis–Menten constant and the total Y is 1, as I change is the output, the steady state value

of YP changes almost linear, it has slight sigmoidal behaviour. Whereas, when I change this ratio

and  make  it  much  smaller  than  1  at  0.01  behaviour,  the  input  output  behaviour  becomes

sigmoidal.

Now this change from almost linear to a sigmoidal input output relation has certain effect. For

example, when my ratio of Michaelis–Menten constant to total Y is 1 or close to 1, I get this

linear input output behaviour, this almost linear input output behaviour. That means, as I change

S from lower value to higher value, my output also changes almost linear, so it is working like a

rheostat, I am slowly changing the switch and slowly my output is also changing, but if my ratio

of Michaelis–Menten constant to Y, total Y is smaller than 1, i.e. this green line, then I get this

sharp sigmoidal behaviour and as you can see in this shaded region, in this region, if you vary S,

the output, i.e. YP will change very drastically, sharp so this region is ultrasensitive.

Whereas, the higher value of S, YP is remaining almost constant at 1, so that means this region is

insensitive. The similar insensitivity is at the lower end also, here also it is less sensitive. That

means, if I have this sigmoidal input output relation, then in the middle region of signal, that is

the input signal, I will have ultrasensitive behaviour but at the extreme end. At higher values of S

and the lower values of S, the system will not be sensitive and it will not be able to differentiate

between different signals. 

Whereas if I have almost linear input output relation which is possible when Michaelis–Menten

constant to the total of Y ratio is close to 1, then throughout the values of S, the input signal I

will have defined values of steady state for YP, that means my output will have defined value,

that means the system will be able to differentiate different S. So the same circuit, depending

upon how much YT you have, how much substrate you have can behave like a ultrasensitive

switch with ultrasensitivity in the middle region and no sensitivity at the end and as you change



total amount of Y, it can become a linear rheostat while it is sensitive to the input signal across all

values of input signal.

(Refer Slide Time: 30:54) 

So let us jot down what we have learned in this module, we have module a negative feedback

circuit with reversible phosphorylation of a protein. We have seen that this system is monostable

with a spiral sink type study state. We have also seen that the steady state position depends upon

input signal S, because its nullcline depend upon S and the Michaelis–Menten parameters of the

reversible phosphorylation. We have considered the reversible phosphorylation of Y is following

Michaelis–Menten kinetics and this Michaelis–Menten parameter are very crucial for the steady

state position of the system. 

When KM KM divided by YT, i.e. the ratio of Michaelis–Menten constant for both the enzymes

and the total substrate is close to 1 for both, X and E that is the Kinase and phosphatase. The

input output relation is almost linear throughout different values of input, but when these ratios

for both, Kinase and phosphatase are smaller than 1. For example 0.1, 0.01, 0.001, then the input,

output  relation  is  ultrasensitive  in  the  middle  region,  it  is  sigmoidal  and  it  does  not  have

sensitivity at higher and lower inputs. That’s all for this module, thank you for watching.


