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Modeling A Positive Feedback Circuit

Hello! Welcome to module 2 of last week of our course. In the last module we have learnt how to

make a module for a negative feedback circuit. Now in this module, we will try to model a small

positive feedback circuit and try to understand the behavior of the circuit using simulation of that

model. 
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So let us start. So if you remember the last module, we have simple negative feedback, we have

just rearranged the molecules to get a positive feedback out of it. So let us look at the graphical

model of this  positive feedbacK. S is  my input  signal  which shows production of X. X get

degraded,  X is  an  enzyme,  it’s a  kinase  so  X phosphorylate  Y to  YP and interestingly  YP

activates production of X so what is happening? 

X is  produced and the production is  triggered by external  signal  S.  X act  as an enzyme,  it

phosphorylates Y to YP. YP in a positive feedback produces more and more X and as we know

that  this  phosphorylation  and  dephosphorylation  are  reversible  processes  in  a  phosphorylate



signaling cascade. YP also get dephosphorylated to Y by a phosphate as E which you can say is

present as a constitutively in the system so that’s my positive feedback. It involves x, the kinase,

Y which gets phosphorylated by X and trigger more and more production of X. S is the input

signal which is triggering the production of X and I have a constitutive phosphate as E which

dephosphorylate YP to Y.

So let us now try to write a mathematical model for this simple positive feedback circuit. We will

consider  here this  Y to YP inter conversion by reversible  kinase and phosphatase activity  is

actually  following  Michaelis  Menten  kinetics.  If  you  remember  we  are  discussing  earlier

modules that if I have reversible reactions both following Michaelis Menten kinetics then this

can have an ultra minus sensitive switch like behavior. So we will take advantage of that type of

behavior in this system. So let us start writing the ODE. First for X, so X is produced only when

you have the input signals. 

One is S and the other one is YP, so the equation for ODE is DXDT equal to K1 KS into S. This

is the production by external signal. KS is the rate constant plus KY into YP concentration, so

KY is another rate constant minus KD into X. X is getting degraded by fast forwarding K. Now

for the YP, YP DYPDT equal to combination of two Michaelis Menten in kinetics formulation.

The  first  one  K1  into  X  into  y,  X  is  the  enzyme,  Y  is  the  substrate  which  is  getting

phosphorylated to YP so I have K1 into X into Y by K1. The Michaelis Menten constant for this

phosphorylation reaction plus Y the substrate minus the second Michaelis Menten reaction that is

reverse reaction from YP to Y that is K2 into E. E is the phosphates or enzyme involved here. 

YP is  the substrate divided by K. into that is  my Michaelis Menten constant for the second

reversible reaction which is dephosphorylation reaction plus Y be the substitute. Now we know

we can assume that the total amount of Y that is free Y and phosphorylated Y sum together is the

total Y and that remains constant. So if I consider this conservation then this second ODE, this is

the first ODE for x, the second is for DYDT. Second ODE gets rearranged where Y is replaced

by YT minus YP so that’s what I have done. DYPDT equal to K1X into YT minus YP so I have

replaced Y by YT minus YP divided by K1 plus YT minus YP that is again I have replaced Y by

YT minus YP. 



Second Michaelis Menten is minus K2EYP divided by K into plus YP remains as same as. So

this will not be my second ODE, this will be my second Ode so I have two ODEs, the first one

for X, the second one for YP and I have replaced Y in terms of YP and YT so I don't require to

write this ODE for Y so these two ODE represent the mod for this simple positive feedback

circuit of a phosphorylated system that I have shown in the graphical model. So now we will try

to analyze the behavior of this system and when I say I want to analyze the system, primarily I

want to study the steady state behavior. So if you remember steady state behavior, one starting

point can be to look into nullclines. 
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So let  us look into the nullclines here.  First  the X nullcline,  if  I  have to  write down the X

nullcline, I have to take the ODE for X that is the first ODE I am taking. This is the first ODE.

DXDT equal to KS into s plus KY into YP minus KDX. Here to calculate the X nullcline I will

consider DXDT equal to 0. DXDT equal to 0 then this first ODE becomes 0 and by simple

algebra I get KS into s plus KY into YP minus KD into X equal to 0. So I now rearrange term so

I get YP on my left hand one side of the equal to sign and X on the other side and its very simple,

you can see rearrangement here is very simple so I get YP on one side that is YP equal to KD by

KY into X minus KS by KY into S. 

It  is  simple  straight  line  equation  where  this  part  that  is  KS  by  KY  into  s  is  essentially

representing the intersect and this whole term that is KD by KY is actually the slope. YP versus



X is a straight line having intersect KS by KY into S and the slope is KD by KY. Now one thing

we should keep it mine here that means this nullcline depends upon input signal S because this

nullcine has in  its  intersect.  Now looking into Y nullcline,  the DYPDT, the ODE for YP is

exactly the same as you have done in negative feedback in the earlier module so I am not going

into details of it. You can simply consider for Y nullcline, DYPDT equal to 0 then you can do

algebraic rearrangement so that you get ODE equal to 0. 

Now, I want to keep YP and X on one side so here it will be easier if we keep X on one side and

everything else on the other side. This you must have seen in the earlier module so here X and

YP has sigmoid elimination and the sigmoidal function depends upon the shape of sigmoid,

depends  upon  KM1 by YT that  is  the  ratio  of  Michaelis  Menten  constant  and  total  Y and

KM2YT  that  is  second  Michaelis  Menten  constant  and  the  substrate  and  obviously  E,

concentration of E that is the phosphorylate concentration. This we have dealt in earlier module.

Now, I have two nullclines and I will plot these nullclines on this phase plane of X versus YP and

try to find out the intersect because the point of intersection will be my steady state. 
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Let us do that. I have plotted first the YP nullcline; you remember just now I said from the YP

nullclines equation, X versus Y will be sigmoidal behavior so I have a sigmoid behavior here.

Now remember X versus YP relation for YP nullcline does not have any input signal at start so

that means this YP nullcline does not depend upon input signal but X nullcine has a start that



input signal so X nullcline will change with my input signal. Let us consider first S equal to Y. If

you consider input signal S equal to1, then you get this straight line shown in this blue color and

that is by X nullcline. Let’s clean a bit.

Now what I will do, I will change S from 1 to 5. Before I change you notice here when S equal to

1 for this parameter that I have used to draw this plot, there is only one point of intersection here

so I have only one steady state. If I increase S from 1 to 5, obviously my straight line moves right

hand side, so now I have this new blue line as my X nullcline and you can easily see now I have

three points of intersection between X and Y nullcline that means I have three steady states. Let

us increase S further. Double S to S equal to 10, now this blue line is my X nullcline. Now I have

only one point of intersection, there so that means that is my steady state. 

What is happening here, as I change S my Y nullcline doesn’t change because Y nullcine doesn’t

has any S term in that equation whereas X nullcine has S term, X nullclines is a straight line and

the intersect of that has S term so if I keep on changing S, as I increase S, my X nullcine shift

right hand side and number of intersection between X and Y nullcine changes. When S is low, for

example S equal to1, I have only one intersection that means I have only one steady state. When

I have higher value of S, for example 10 the way I have shown here, I have again one point of

intersection that means I have one steady state. When I have S in between for example S equal to

5, I have 3 points of intersection that means I gave three steady states. 
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Now we will look into the issue of stability of this steady state. You can take help of drawing the

phase plane plot the way we have discussed to draw arrows around the steady state, you can try

that but that is with combustion. I have used MATLAB to draw these phase portraits. If you

know MATLAB you  can  try  otherwise,  let  us  discuss  about  it  and  I  will  show  you  some

numerical simulation to understand the behavior in different fashion. So when I consider S equal

to 1 this is my phase portrait. This is my Y nullcline, this is my X nullcline and I have only one

point of intersection that is my steady state if you look into phase portrait, if you start somewhere

here, at T equal to 0. The trajectory shows that you will collapse at the steady state here. 

If you start somewhere here, at T equal to 0 then following the trajectory in the phase portrait

plot, I will collapse here at the steady state. Here if you have started at T equal to 0, then you can

collapse on the sensitive state, so this steady state if you do exhaust it which is beyond the scope

of this course you will find that this steady state is a Nodal Sink. I have only one steady state at S

equal to 1 and that’s stable Nodal Sink. What happens if I have higher value of S, S equal to 10

then again this is my one nullcline that X null, this orange null that is my Y nullcline and I have

one point of intersection here and phase portrait says that if I start from here suppose T equal to 0

then I  move along this  blue trajectory  and collapse here.  If  I  start  somewhere here again I

collapse on the single steady state. 

Again I have only one steady state and that steady state is a Nodal Sink so it’s a stable one. What

happens if I have s equal to 5? If you remember what we have, if S equal to 5 then I have three

points of intersection and if you look into the trajectories, these trajectory is going and hitting the

steady state. This trajectory is again going and hitting this steady state whereas if I start from

here, the trajectories are taking me to the other steady state at the lower one. If I start from here I

will follow this trajectory and collapse at this lower stead state. If I start somewhere here at T

equal to 0, I will follow this blue line and collapse at this stage. Nowhere the trajectory collapsed

at the middle steady state so this middle one is a saddle point and I have two lower and higher

values of steady state which are Nodal Sink. So you can see easily that depending upon s, not

only my number of steady state changing but stability behavior is also changing. 
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Now  let  us  look  into  it  in  terms  of  bifurcation.  If  you  remember  what  is  bifurcation,  in

bifurcating system I have one or more parameters, depending on the value of parameters, my

number of possible steady state changes or the behavior around that steady state, the issue of

stability, instability around that steady state changes or both of them change together. In this case

as I change S, my number of steady state changes and the stability of those also changes so what

I can do is I can bifurcate the plot as shown here, with S in the horizontal axis and steady state of

YP in the vertical axis and I can plot different steady state value of YP as I change S and I can

see that for some value of S I will have only one steady state that is in this region my system is

monostable. In the higher values of S also, in this region my system is monostable because I

have only one steady stable state in those cases. 

In between I have option for any value of S for example if I take S here I have three steady state,

two of them are stable and one is unstable. So this middle region is actually bistable energy. One

thing we have to keep in mind that this particular figure I have not drawn based on the exact

results from our model. To draw these type of bifurcation plot using ODE based module that we

have discussing is not so easy. It requires MATLAB and other tools like expert, those are beyond

scope of our discussion here today but in general the behavior will be like this. What we will try

to  do now is  we will  use JSim and two numerical  simulation  and try  to  draw this  type  of



bifurcation plot and which is very easy and you can use in your desktop. Remember this system

has bistability. 
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So let us numerically simulate this system. I will use JSim again and JSim code is given here.

The  code  is  lengthy  so  I  have  broken down into  two pages.  The  first  part  as  you can  see

obviously it first defines time, initial time as 0 and maximum I have taken as 50. I have two

dependent variables X and YP, and I have set up parameters values here. This parameter value

we can change, for example we will keep on changing S, and we will keep rest of the parameters

as constant. You can easily notice KM1 and KM2 are very small point 0.05 whereas YP is 1 that

means the ratio of this KM and YT will be much smaller than Y and that is required so that I get

very good sigmoidal YP nullcline. 
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Now rest of the part of the code I have to define the initial value, here I have shown X equal to 0,

YP equal to 0. This part we will keep on changing during our simulation to see the change in

behavior and rest of the things are the same for ODEs. This code you can write in your JSim

model and try to simulate the way I have shown the simulation. 
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Now what I have done first, I have done the simulation of this model with initial condition where

both X and YP are equal to 0 and I have varied s using the loop option, if you remember JSim



has loop option, and I have plotted the data. Look at figure 1. I have got a time T here and YP in

the vertical axis. Only for two higher values I am having s from 1 to 10, only for these two

higher values 9 and 10, the steady state is a near1 that is higher value whereas for rest of the

other value of S starting from 1 to 8, you can see the steady state are near point 1 so lower value

so you can easily see, depending upon the input signal S I am getting two different regimes. 

Till S equal to 8 I have got steady state which are very close to each other and the lower value of

Y whereas when I increase S to 9 or 10 they bunch together and they are giving me higher steady

state. I can use these data and plot a second plot where I will put S in my horizontal axis and

steady state value. Remember the steady state value for YP in vertical axis, how do I get the

steady state value? I take the value of YP at the T equal to 30 or at the end of the simulation. By

that time the system has steady state so I have plotted those values and you can easily see when S

is higher around 9 or 10 I have a steady state which is a higher value near 1 whereas in these

regions from 1 to 8, my steady states are low and close to 0.1 so that means you an easily see,

this system has interesting jumping steady state. 

If I start at X equal to 0, YP equal to 0 and if I keep on changing S, up to S equal to 8 I will

remain as a lower steady state. After that if I increase s equal to 9 or 10 I will jump into higher

steady  state,  that’s a  drastic  jump.  Now let’s do  the  same simulation  but  change the  initial

condition  so now I  am taking X equal  to  5 and YP equal  to  0.5 and I  am doing the  same

simulation here. 
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Now you see just the opposite if I have s equal to 1 or 2 then they give me a lower steady state

value. For rest of the other value of s starting from 3 to 10, the system converges at a higher

steady  state.  Those  values  are  very  close,  so  if  I  now got  the  steady  state  value  from this

simulation in a plot which is bifurcation plot essentially with S in my horizontal axis and steady

state value of YP in these axis, I get this stage of data so if S is lower value here then I go to this

lower steady state which is close to 0 where as if I am on a higher value of S I reach this higher

steady state which is close to 1. So you can see there are two regimes, depending upon the value

of S, one is higher steady state and one is lower steady state but where you will reach will

depend on the initial condition so now let’s merge these two data sets and combine in a single

plot. 
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I have merged those two data sets and I have combined single bifurcation plot so this is my

complete bifurcation plot that is s in the horizontal axis and the steady state value of YP in the

vertical axis. You can easily see up to this region the system irrespective of the steady state, the

initial condition have only one option, the lower steady state so the system is mono state whereas

for this higher value again, irrespective of the initial condition the system reaches this higher

steady states so again here the system is mono state. In between the grey region that I have

shown here, the system is bistable because it has two steady states shown by these red dots, the

higher steady state and this blue dot the lower steady state. 

Depending upon the initial value of X and Y there is initial condition, the system will either go

into lower steady state or to the higher steady state so that’s one my bifurcation concept tells me

so what I have got here, I have got partial bifurcation plot. I will say partial because remember

both these steady states are actually stable. If you compare the real bifurcation plot the way I

have drawn in few slides back you have another dotted line somewhere here which represent

unstable steady states. But in numerical simulation your simulation will never reach unstable

steady state so you only get steady stable state so this unstable steady state can’t be drawn by

numerical simulation so we only see that steady stable state.

Whatever it is we are not bothered about unstable steady state because the system in reality will

also never reach unstable steady state, it will move away from it so my numerical simulation tells



me that this system has bifurcation depending upon the initial  value and the value of S, the

system can be monostable or bistable and if its bistable regime, which steady state it will go will

depend upon the initial condition. You can easily draw this type of bifurcation plot by numerical

simulation if in case of other type of networks and circuits.
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Let us jot down the points so the key points for this module is that we have modeled a positive

feedback circuit with reversible phosphorylation of protein and remember this phosphorylation

and both  the  phosphorylation  are  following Michaelis  Menten  kinetics.  We have shown the

system has bifurcation with respect to input signal S, simple nullcline analysis we have shown

and numerical analysis we have also shown that. Depending upon the value of S you can have

two situations. One you can have one stable steady state or you can have one situation where you

have two stable  steady states  and one unstable  steady state,  therefore the system is  actually

bistable in that region and remember these types of situations where number of steady state is

changing with S, the input signal is happening because the YP nullcline is nonlinear, sigmoidal. 

If it  has been linear then we have always only one point of intersection between X and YP

nullcline that means we always one only one steady state but here the YP nullcline is nonlinear

sigmoidal and X is linear one so I have multiple type of possible intersection depending upon the

value of S. so this nonlinearity is crucial to give rise to this bistability and the last one what I



have discussed is that you can actually do bifurcation analysis by simple numerical simulation

the way I have shown you. 

You have to change the parameter, in this case the parameter is S the input signal, I am changing

the value from 1 to 10 for S and I am simulating for different initial conditions and then I am

getting steady state value from my simulation and I am plotting S versus steady state value of YP

from this steady state values and that gives me a partial bifurcation plot which tells me system is

monostable in some value of S and is bistable for some value of S.  That’s all for this module, see

you in the next one.


