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Modeling population growth

Hello. Welcome to Module 4 week 1 of our course on Dynamical models in Biology. In the last

module we have discussed about  using ordinary differential  equation to  create  mathematical

model for spread of infectious diseases. In this module we'll continue in along that, we'll create

some new model using ordinary differential equations. So today we'll, in this module we will try

to model growth of a population. Population growth is a very common dynamical process in

biology. Population of a city increases with time, population of animals in a forest increases with

time, you may be growing bacteria in a fermenter, number of bacteria will increase with time, in

a tumour number of cancer cells increase with time and we want to model that change, that

growth in population. Population growth can be complicated. For example human population

growth is a bit complicated with respect to growth of bacteria or growth of tumour cells. May

have different processes involved in that.
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In  this  module  we'll  try  to  get  a  simplified  model  to  understand  how  ordinary  differential

equation can be used to model population growth when the growth of population is very simple,



like growth of bacteria in your fermenter, which happen by binary fission, from one cell you get

two, from two you get four. With some assumption you can make the model for growth of cancer

cells in a tumour like that because from one cancer cell two cells will be produced, from two

cells four will be produced, like that. So these are just binary processes one to two, two to four.

And I want to create a mathematical model for that. Remember we will use ordinary differential

equation and in a dynamical model, ordinary differential equation represent rate of change. 

So here we'll write ordinary differential equation to represent change, rate of change, rate of

change in the population size. So if I can use an logic that, that rate of that population growth I

want to measure actually and obviously this will be proportional to the current population. So if

you have more bacteria obviously the rate will be effective rate of growth of the bacteria will be

higher. So if you represent this proportionality in terms of a ordinary differential equation I get

this equation. Here X  represent population of bacteria at time t  that is right now and r

represent rate constant of growth, so dx /dt  that is the time derivative of X  that is rate of

change of X. Rate of change in population size equal to r∗X  

Essentially,  dx /dt  is  proportional  to  X  and  we  have  used  r  as  a  proportionality

constant,  and  r  is  a constant.  It  is a parameter of this ODE. And  X  is  the dependent

variable, t  is the independent variable.  So if you look into the equation we have 
dx
dt

=r . X

. Here the power of  X  is one, the power of the derivative is also one. There is no product

between X and its derivative. So that means we don't have this product, that means this equation,

this ordinary differential equation is a linear equation. So now, once I have this model this equa..

this ODE which is my mathematical model we want to ask certain question to this model. 
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So what type of question I can ask, I can ask like this. That I have started with hundred bacteria I

know the rate constant of growth how many bacteria’s will be there suppose after four hour? Or I

can have a generalized question that I want to know the dynamics of population change. That is I

want to know how with time the X, the population size of the bacteria will change. So I have this

model 
dx
dt

=r . X . This is my model and I am asking this question. If you remember what we

did in the last module we essentially integrated this equation, this ordinary differential equation

to generate the function...  X  as a function of time. And once we got that function we can

answer these two questions. 
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So let us here, we will try to integrate this ordinary differential equation to get this function. How

we'll start, very simple. We'll separate  X  and time  t , so that's what I have done I have

separated them. So I have to integrate  
dx
x

 from  X 0 ¿X  and I have to integrate time

from 0 to t . So, X0 is the population at t=0 . X0 is the population when time equal to 0. So

using  the  general  formula,  simple  formula  of  integration,  
dx
x

=ln X ,  while  as  dT  by

integration give me t . I have integrating from X0 to X and t from 0 to T, so if I simplify I

get ln X  minus lnX 0 equal to r (t−0 )  that is equivalent to t . So if I simplify further

and rearrange the term I get, ln( X
X 0 )=r . t

Let us do further simplification then we get,  
X
Xo

=ert
. And remember I want to get X as a

function of time so I want to keep X on one side of the equal to side and everything else on the

other  side.  So  that's  what  I  have  done  in  the  next  step.  I’ve,  I  have  rearranged  the  term

algebraically and I have got X=Xo .ert If you look into the right hand side of this equation X0

is a constant because you have decided that, that is the initial number of population, initial size of



the population, r  is a rate constant there is a rate constant of growth and t  is the time. So

this is my function. 
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Now once I have this function I want to go back to my first question. So suppose at  t=0 ,

suppose t−0  my initial population of bacteria is 100. That means I have seeded 100 bacteria

in  my  fermenter  and  I  know  the  rate  or  the  rate  constant  for  growth  is  0.05  per  minute.

Remember bacteria’s grows very fast, so I want to know after one hour T equal to one hour that

is 60 minute what will be the size of the bacterial population. So how can I answer this question.

My model is 
dx
dt

=r . X  by integrating that with initial condition I have got X=Xo .ert  So I

put the values X=Xo .ert . 

This is X0 for me in this example is 100 into  er∗0.05  into remember the time is 60 minute,

because your  r is in minute scale I have converted one hour into 60 minute this one I have

already done the calculation. This is almost approximately you can calculate it is equivalent to

2008 cells. So that means my mathematical model is saying that if I inoculate 100 bacteria and if

the growth rate constant is .05 per minute after one hour I will get 2008 bacteria. So this was a

specific question and specific answer. 
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But suppose I want to get a generalized dynamics, understand the generalized dynamics of the

bacteria how will I approach it. So my model is 
dx
dt

=r . X  by integrated integrating I have got

the function,  X=Xo .ert . And I want to plot this one so that I want to plot X in the vertical

axis and T on the horizontal axis, and that's what I have done here. What I have done, I have

taken different values of time from 0 to 240 minutes that is mean 4 hour and I have taken a fixed

value of X0 that is 100, already I know r  equal to .05 per minute. So using this function I

have got this curve. So see we have exponential term here. X=Xo .ert . That means the growth

of the population is exponential and that's what you can see here. We started with 100 bacteria

here,  just  close to 0 and within 3 hour it  has started increasing and it  has stated increasing

exponentially. By four hour we have reached almost 16 x 10 to the power 6 cells. This is a huge

exponential growth.  

So what we have done till now. We have fitted a ODE based model for simple growth of bacteria.

You may, make some assumption and you can use this type of model for growth of maybe tumor

cells also. We ask two cons questions. One is a specific question. That if I start with a particular

number of cell we know the rate constant for growth what will be the size of the population after

one  hour  or  two  hour  and  the  second  one  is  I  want  to  answer,  understand  the  generalized



dynamics of population growth which I have shown here by this plot. Now, isn't there something

wrong with this plot. You see the bacteria’s are growing exponentially. 

As we are not considering any death of bacteria with time exponentially these thing will keep on

increasing towards infinity. That never happens. If you are growing bacteria in a fermenter or on

a agar plate they don't keep on growing. They after sometime saturates. They hit a ceiling after

which they don't grow further. That is true for a tumor growth also, that is true for growth of

population in a city also. That is true for growth of population of animals in a forest also. The

population size cannot keep on increase infinitely. There must be certain limit. 
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So this limits comes from the crunch of resources. If you are growing bacteria on a plate after

sometime there will  be no food,  there will  be no space  further  to  grow the  bacteria.  If  the

population of a city increasing after sometime there will no place for the people to stay. There

will resource crunch for food, job, etc. So population will ultimately plateau and will become

stationary. So how can I  make this  initial  model  of  population  growth bit  more  realistic  to

incorporate this idea that the population cannot keep on growing infinitely. I tried it by getting a

very simple model. I tweaked the equation, that ordinary differential equation to create a new

ordinary differential. 



Here also your X is the population at time T R is the rate constant for growth. So, dx /dt  is the

derivative which represent, Rate of change of of your population is equal to I have written r

into obviously X  in between I have (1−
x
k
)  What is K? K we call carrying capacity. How

much bacteria can grow in my agar plate? How much bacteria can grow in my fermenter of one

litre  size?  How  many  people  k  can  stay  in  a  city?  So  K  is  the  carrying  capacity  of  the

environment. So if you look into this equation, what will happen? 

Initially when X is much smaller than K, that means the population size is much smaller than K

then  1  minus  X  by  K  is  almost  equivalent  to  1.  So  then  my  rate  equation  will  become

dx
dt

=r . X . Just like my previous equation. So this will give me exponential growth. But after

sometime, after sometime what will happen, X will become close to K. Or I can write X will

start approaching the carrying capacity K. So then X by K will be moving towards 1 and 1 minus

X by K will tends towards 0. So my rate of change dx /dt  will tends towards 0. That means

initially,  initially  I  will  have  growth,  exponential  growth  but  as  the  population  reaches  the

carrying capacity of the environment the growth rate will start reducing and eventually it will

become 0. This type of equation is called logistic growth equation and we’ll call this model

logistic model. 
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Now let us go back to questioning this model. If you remember we can ask two type of question.

We can ask a specific type of question that I have a particular population right now, what will the

population in size after two days three days or something sometime after if there is time or we

can try to understand the generalized question,  that what is the generalized dynamics of the

population. Now to get this answer we have to integrate my ordinary differential equation. So

this  is  my ordinary  differential  equation  here.  In  this  case  I  will  try  to  integrate  it.  Before

integration I want to rearrange term. So I have rearranged this term I have multiplied both side

by K. So I get K ( dXdt )=r (1−X ) . X . 

Then remember I have to separate out X and t . So I have done that. So I have rearranged term

here  to  separate  out  X  and  t  on  both  on  the  other  side  of  the  equal  to  sign.  So  I  get

k
k−x

∗X

dX
=r . dt .  I  can  rearrange  this  term  further.  This  whole  thing,  this  whole  thing

k
k−x

∗X  is nothing but  
1
x
+

1
(k−x)

. So from this I get 
dX
X

+
dX

k−X
=r . dt . So now we

will integrate both side. So that's what we have here. We integrate, dX /X  from X0 that is the

initial population size to the final population X. ∫
Xo

X
dX

k−X
. And we integrate dT from 0 to T. 

Remember I have r  it is rate constant, it is a parameter, it is not changing with time. And I

have K the carrying capacity which is also a parameter and constant is not changing with time.

So if  I  use the general  formula of integration,  from integrating  
dX
X

I  get  lnX, integrating

dX
k−X

 I get - lnK -X. So I have to integrate from X0 to X. And this one also to be integrated

from X0 to X and time from 0 to t . So by simplification what I get? I get ln of X−lnXo

this  whole  thing  is  coming  from  this  one.  From  this  one,  from  this  one  I  get

lnK−X+lnK−X 0=rt . I am getting this from this one. So if simplify further coupling all

those, taking all those logarithmic term together I get (lnX∗1−X0. k−X 0)/X 0∗K−X=rt .  



I will do further rearrangement. I'm taking the log out, so I get 

K−Xo
X∗(¿)

¿
¿
¿

. Exponential term on

my right hand side. Remember I want X as a function of time so I will keep X on one side of the

equal  to  sign  and keep everything else  on  the  other  side.  So that's  what  I  have  done here.

Rearrange the term and I get X=K /1+( k
X 0

−1)∗ert
. You can try this rearrangement yourself.

It will be clear and you'll see the simple rearrangement. So this is the function, final function that

I have got here. X=K /1+( k
X 0

−1)∗ert
. So using this function I can actually understand the

dynamics of the process. 
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So what  I  started  with.  I  first  made a  mathematical  model  in  terms of  ordinary  differential

equation,  I  got  the  function  of  a  function  to  represent  X  in  terms  of  function  of  time  by

integrating that equation and now I want to plot X in the vertical axis and time in the horizontal

axis. And that's what I have done here. For X0 equal to 100, just in the earlier example we started

with 100 bacteria, rate of growth r , is a constant for a growth is 0.05 per minute, remember

this rate constant not rate. K is the carrying capacity, that is 10,000 I have taken, that mean my



plate or my fermenter can carry or accommodate only 10,000 bacteria. So now if I put this value

in this function I get a curve like this for different values of t . 

So see here I have plotted from 0 to 4 hour. This is 4 hour. Just like the previous plot. In the

previous case we had it was exponentially growing like this that is not happening here. You can

see, here in this case the population is growing and then after sometime it is saturating at the

carrying capacity 10,000. When X is small,  then K your rate is higher, so initially you have

growth as T tends to infinity this becomes smaller and smaller. The whole thing become, the

lower denominator become one and X reaches towards K that is the carrying capacity. So what is

happening here? We start with 100 cells, initially increases exponentially as it reaches towards

the carrying capacity K it becomes shallower, shallower and then it becomes flat and hits the

ceiling, the saturation point of 10,000. There is no further growth of the bacteria. 
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So if I jot down what we learnt from these two exercises remember I started with the simplest

model, the model of growth of bacteria without any bound. I have not considered death. I have

not considered any constraint from the environment on the population. And we got exponential

growth. We have used the ordinary differential equation to represent the rate of change of the

population size then integrated that to get the function. The function that represent the population

size with respect  to  time and then we answered questions.  Then we moved into making bit



complex model. So starting with a simple model, then I moved into logistic model where we

have considered that environment has limited resource to accommodate a population. 

So we have introduced a concept of carrying capacity and just tweaked our previous equation

with  small  addition  here  and  there  to  create  a  new ordinary  differential  equation.  And that

ordinary differential equation represents the reality far better than the previous one because now

population cannot grow continuously. After sometime it will reach the carrying capacity of the

environment and the population growth will stabilize and remain fixed at that value. And we

created the ODE, integrated that. After integrating we have plotted  t vs X  population in uh,

change in population with respect to time and we got a sigmoidal curve.  Initially there was

increase, faster increase and then the increase become slower and reaches a plateau. 

So this type of model is called logistic model. And the equation that we use is called logistic

equation. You can use this type of logistic equation in other cases also beyond population growth

where the process is constrained by the resources from the environment other. So initially there

will be higher rate of the process and then it will saturate. And we will get a sigmoidal dynamics

in respect to time. That's all for this module. Thank you for watching. We'll build new modules in

future. 


