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Lecture 29: Basics of Information Theory - II
Welcome. So we have introduced the idea of uncertainty of random variables.

We have introduced the idea of reduction in uncertainty of a random variable by
knowing another random variable which is also called mutual information. So we
have extended that idea to call to in the case of continuous random variables by us-
ing differential entropy as a measure of quantifying the dependence between two
random variables that is the difference in differential entropy of a random variable
X and the differential entropy of a random variable X given another random vari-
able Y. In our case stimulus and response. So using this mutual information we
can now quantify how much dependence there is between a random variable with
another random variable although we cannot explicitly model the relationship be-
tween the stimulus and response or two random variables X and Y.

So we cannot have a predictive model per say directly using mutual informa-
tion but we can quantify how much dependence there is so that we can test models
by knowing that okay the dependence can be up to this much. So does the model
capture that much dependence. So in that way we can get an idea of how much our
model works or how well the model works in the ideal sense because that is or if
there is more room for improvement. Also we will later on talk about how we can
take the help of mutual information in order to identify the possible features that
a neuron encodes without directly being able to model it but empirically deriving
a possible model from the data.

So another way of quantifying mutual information is through Kullback-Leibler
divergence or Kullback-Leibler distance that is Kullback-Leibler distance. It is
also called relative entropy. We define we simply write it as Dkl between two
distributions p and q. Let us say p is a distribution of a particular random variable
X and q is another description of the distribution of p of the same random variable.
I mean basically the two distributions are defined on the same support that is the
possible values taken by X.

What Dkl(p, q) provides is how different or quantifies how different the two
distributions p and q are or how far away one distribution is from the other in
different kind of space. Here it is not truly a distance measure because it does not
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follow symmetry, it does not follow triangle inequality. However it in some sense
quantifies the difference between the two that is applicable in terms of communi-
cation in source coding basically shows the amount of or the extra amount of loss
incurred by making a mistake in encoding a distribution p by another distribution
q or representing one distribution p by a distribution q. So there is a physical
meaning associated with it which is more applicable to communication systems
or source coding. Here however we can use this for a variety of purposes where
we can quantify the distance or the difference between two distributions without
making any assumptions about the possible distributions or the underlying distri-
butions.

So that is given empirically or observed p and observed q if we can quantify
Dkl of the two distributions we can quantify how different they are and make
conclusions based on that. So this does not require us to assume that okay p must
be uniform q or q must be uniform or Gaussian as we will be doing in many other
cases in computational neuroscience we will see that later on. So this allows us
assumption free way of quantifying differences between two distributions. So but
in another way that this Dkl is important to us is that this also provides a way of
defining mutual information between two random variables x and y. So what is
the definition of Dkl(p, q) it is simply that it is summation p(x) or an x is sum over
all possible x’s that is the support of the two distributions log(p(x)/q(x)).

So as you can see this is not symmetric and so it is not truly a distance although
we will call it kl distance. So this definition of kl distance appears in the definition
of Ixy also that is we have Ixy equals we have said that it is h(x) minus h(x) given
y. So by our definitions of h(x) and h(x) given y we can show that it is also
given in your handout that this is equal to basically sum over or sum over either
all the x’s and all the y’s p(x, y) this is the joint distribution of p of x and y
log(p(x, y)/(p(x)p(y)). Now if you look at this this is very similar expression as
kl distance. So in this case we are looking at two distributions now this let us what
was p of x before is nothing but the joint distribution p(x, y) and what was q of x
before is nothing but the product of the marginal p(x) and p(y).

So this mutual information then turns out to be the dkl of the joint distribution
p(x, y) and the product of the marginals p(x) into p(y). So now the interesting
way of looking at mutual information is how different is the joint distribution
from the product of the marginals p(x) and p(y). So remember that when two
random variables x and y are independent then p the joint distribution p(x, y) is
the same as the product of the marginals p(x) into p(y) and in that case when x and
y are independent as we expect the mutual information Ixy in that case is 0 and the
more different the joint distribution is from the product of the marginals that is the
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mutual information keeps on increasing. In other words the mutual information
is the distance between the joint distribution and what the joint distribution would
have been had the two random variables been independent of each other. So had
they been independent of each other then the joint distribution p(x, y) should have
been p(x) ∗ p(y).

However the observed joint distribution p(x, y) is whatever we are looking at
and so the distance between them or the kl distance between them is the quantifi-
cation of dependence between x and y that is the distance from independence. So
now if we go back to our idea of stimulus and response then we have the stimulus
and response all we need in order to compute this mutual information is just one
thing which is the joint distribution of p s and r. What is p s and r? p(s, r) is
the joint distribution this is simply the output of experiment where we use differ-
ent stimuli depending on the question we want to answer and make observations
about the response depending on the way we want to define the response measure
and by varying the stimuli and repeating the stimuli multiple number of times we
get an estimate of this joint distribution. So if as we discussed in the earlier class
let us say our stimulus takes on values s1 up to sn and we observe the responses
are as either r1 up to rm these are the possible responses that we observe and the
stimuli are s1 up to sn. Let us write this down in the matrix form here s1 up to sn.

So each row here is like this depicting its stimulus and we already have the
marginals let us say we give the stimuli equal number of times or present the
stimuli equal number of times so it is 1 by n in each case or maybe it is naturally
equally probable. So these are all 1 by n so this here is our marginal probability
p(s) that is 1 by n each time. So now in the experiment what are we doing we
present the stimulus s1 let us say capital k times and in each of those k times we
observe some a few times r1 a few times r2 and so on up to rm. So based on these
values we get an estimate of probability of response equal to r1 given s equals s1
probability of r equals r2 given s equals s2 let us say our k is 20 and our r1 is our
the number of times we observe r1 for stimulus 1 is 2 then this turns out to be 1
by 10 and let us say we observe this r2 0 times so this becomes 0 let us say we
observe rm 5 times then we have probability of r equals rm given s equals I am
sorry this is s1 s1 is equal to 1 by 4 and so on. So we have the probabilities r1 r2 up
to rm given the stimulus is 1 which is this particular row here and based on what
we have we have 1 by 10 and multiplied by probability of s equals s1 which is 1
by n which we already have there this is 0 and this is 1 by 4n that is we have now
multiplied this by probability of s equals s1 in order to get the joint probability.

So this way we can fill up this entire matrix that is obtain the joint probabilities
ps equals si and r equals rj so this is the ijth element in this so this is the jth this
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is the ith this is the pij let us say. So now we have with the different i’s and
j’s given the experiment we can fill up this matrix and we have the by summing
these along the columns we have the probabilities marginal probabilities of r that
is p(r) this is r equals r1 up to probability of r equals rm. So all the components
required to compute mutual information is present that is we have the joint values
that is sum over sum over we have s equals s1 to sn and r which is we can write
this sum as basically not s1 to sn we can write it as i equals 1 to n which is
basically it will sum from s1 to sn and this is j equals 1 to n probability of s
equals si, comma r equals rj log(probability(s = si, r = rj)/probability(s =
si)∗probability(r = rj)) and by summing them over the all possible combinations
of stimulus and responses we can get mutual information between the stimulus and
response. There are number of issues practical issues that will come about when
we actually do the computation because of associated bias in measurements in
the estimation of entropy and mutual information. So you will you can see from
the KL distance approach that and also the conditional I mean entropy minus
conditional entropy approach that mutual information is greater than 0 that is it is
always I mean it is non-negative it can be 0 when the two random variables are
independent.

So there being non-negative even entropy is also non-negative because the
lower limit the lowest possible uncertainty is 0 and in the axioms also it is the
measures have to be positive in that sense and you can see that negative logarithm
pi log pi is will turn out to be also always positive or non-negative and so because
of that even when there is no dependence we will get some spurious dependence
present from the noise itself because no matter what it is always positive. That
leads to many issues in the estimation and so there are ways that in I mean if you
are going to be actually implementing these you can take resort to other ways
other means of removing that bias which is de-biasing information theoretic esti-
mates. There are number of ways that have been used and will provide references
for those however for our purposes we will take this as one way to compute mu-
tual information and now we will take this forward in order to see how mutual
information and KL distances can be applied in terms of understanding neuronal
coding. So if we go into the summary what we have shown is if we can if we think
of a random variable X or let us say the stimulus and response then the connection
between them is quantified by this or dependence between them is quantified by
this mutual information of I(S,R) or I(X, Y ). Now if we think of this circle or
representing the uncertainty in the random variable X or S and let us say this circle
represents the uncertainty in R or Y let us say so this circle represents H(S) and
this circle represents H(R).
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So the part that is remaining outside of R in S is the uncertainty remaining
in S given we know Y. So we know Y so that means this shaded part is H(S)
given R we know R or Y this is H(S) given R. Similarly we can think of the
vertical shaded region here is the region of R uncertainty of R that is present if
we know S that is H(S) goes to 0 then the vertical shaded region provides us
H(R) given S that is the entropy remaining in the response given the stimulus. So
the intersecting region which is the horizontal shaded region is what we call the
mutual information I(S,R) which is nothing but H(S) minus H(S) given R or
H(R) minus H(R) given S. So in other words in this case the intersection in this
Venn diagram form the intersection is providing us the dependence or representing
the dependence between the two random variables.

So another important idea that is required in order to go forward is the idea
of the data processing inequality which simply says that let us say we have I will
not go into the technical details of this we let us say we have a chain of random
variables that is from X we get to know Y from Y we get to know Z and it is
such that if we know Y then X and Z become independent that is what we mean
by a mark of chain here that is X and Z are conditionally independent that is
given Y. If we have a situation like this so let us say we have a stimulus and let
us say from there we have a response now given from the response we have an
estimate of the stimulus let us say another random variable S ′ which is something
which is also a random variable and given R S and S ′ are independent because
S ′ is only dependent on R the S in S does not influence it in any way once we
know R. In such a scenario what we can we can show or what has been shown is
that the mutual information between X and Y is greater than equal to the mutual
information between X and Z that is by processing the response or a random
variable to a new random variable Z we actually lose information that is the this
is what we call the data processing inequality. So what this tells us is that if we
use some data to know about a particular random variable let us say we take R
to know about S and then we process R further to a new random variable then
the amount of information that is going to be there in the new random variable
about the first random variable is going to be less than what was there between the
previous random variable and the original random variable that is R and S. So that
means there is a lower bound in terms of if we if let us say we somehow estimate
I(X,Z) without knowing Y then I(X,Z) is a lower bound of I(X, Y ).

So this will come up when we look at discrimination based decoding with the
of stimulus and response. So with these all these ideas of information theory we
will now later go to applications of them and we will first consider the case of
applying information theory in order to derive possible models between stimulus
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and response in a particular way that is what the methodology is maximally infor-
mative dimensions. So remember we motivated the idea of going into information
theory from the fact that we can only model stimulus response relationships only
up to a certain degree or order. We definitely can use linear models which we did
using the spike triggered average which can be extended to higher order models
but obviously there is a limitation as to how far we can go and so we took the help
of information theory or we said that we will take the help of information theory
in order to build or understand what models can be between can be possible be-
tween stimulus and response. So given this background of information theory in
our two lectures now in the next lecture we will start off with the applications of
the ideas first with the idea of maximally informative dimensions. Thank you.
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