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Welcome!  

In the last class we had completed whatever we wanted to cover in module 4. What we 

will do in this class is since we have covered quite a few new concepts, let us look at 

them one more time, the concepts with some detail not too much detail. 

(Refer Slide Time: 00:42) 

 

This module, module 4 is on thermodynamics of solutions. Before we got into module 4 

we looked at how a typical class is, in terms of worthwhile achievements the number in a 

class versus worthwhile achievements.  Then, I said I typically teach to people here, and 

the people here will need some help.  Probably, they can discuss with me later.  The 



people here are the ones who are expected to contribute a lot more to the area, the course, 

and so on and so forth. 
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So, for them … let me remind you once again … everybody can do; please try it out.  

You do not really know where you are in this class till you evaluate yourself, the ease 

with which you can do this particular exercise. It is actually quite a tough exercise.  This 

is called the choose focus analyze exercise. Students need to choose a problem of 

relevance to the bio-industry or any human endeavor and analyze it using the 

thermodynamic principles taught in class. 

This is an open ended exercise, which has been designed to improve the skills of choice, 

focus and analysis in students.  A concise report in the format that you think would best 

communicate your work – this also deliberately done this way – would be evaluated on 

the following criteria, the criteria are as follows. 

Originality in approach would carry 15 percent, focus level 15 percent, depth of analysis 

20 percent, quantum of work 20 percent, original contribution 20 percent ,which means 

this should not exists earlier – that kind of a thing, and presentation, which is mainly 

communication – communication carries 8 percent and the professional appearance of 

the report carries 2 percent. So if you can do this for whatever time you want, and you 

want to get back and discuss – that is also fine. 
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Now … we started looking at the thermodynamics of solutions.  We said that in the 

previous module we had looked at pure substances, where as many systems of biological 

interests consist of many substances. Sometimes we come across, rarely, a pure 

substance.  But, we need to understand the formulations for a pure substance well, before 

we could appreciate that for solutions.  That is the reason why we spent time on the pure 

substance, first. 

Many systems of biological interest consist of many components and when the 

components are mixed, there could be changes in, for example, volume or enthalpy.  

What we said was: let us say that there are 2 components; each one has its own volume –   

volume is easy to imagine – each one has its own volume.  When we mix them together 

in a certain proportion, the final volume may not be the weighted average in terms of the 

mole fractions of the initial volumes. That is the nature of the substance itself.   That we 

have recognized here.  Therefore, we need to treat solutions differently. 

Therefore, the thermodynamic properties, not just the volume, all the thermodynamic 

properties of the mixture or solution may not be the same as the weighted average of the 

relevant properties of its components.   

If that indeed happens, it becomes an ideal solution. If the thermodynamic property of 

the solution is indeed equal to the weighted average of the components then it is an ideal 



solution, otherwise it is a non ideal solution. We will predominantly look at non ideal 

solutions and ways to handle them. 
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We said that we will look at some concepts for multi component systems in this 

particular module, and we recalled what an ideal gas was, in terms of chemical potential, 

… mu equals mu naught plus R T ln P.  … For a real gas the P gets replaced with a f; mu 

equals mu naught plus R T ln f, fugacity, and f by P tends to 1 as P tends to 0. 

So, this is for ideal gas and this is for real gas pure component.  Now, what happens if 

we mix them together?  Before that, we said, we will look at a concept of perfect gas 

mixtures and imperfect gas mixtures, which are essentially concepts which we will 

invoke at a later stage. It is just being presented here for completeness; it is nice to have 

all these formulations at one place. 
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The perfect gas mixture is one for which the chemical potential of the component i, for 

each component is expressed as mu equals mu i naught plus R T ln p i, the partial 

pressure of the component i.   mu i naught is a function of temperature alone, as earlier, 

and p i is the partial pressure as we mentioned … this is a perfect mixture of gases. 
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For an imperfect mixture of gases, we said, mu i equals mu i naught, which is still a 

function of temperature, plus R T ln f i hat. Here f i hat by p i tends to 1 as the total 



pressure tends to 0. So these were the two hypothetical substances, perfect gas mixtures 

and imperfect gas mixtures which are defined this way. 

(Refer Slide Time: 06:23) 

 

f i hat by p i was defined as the fugacity coefficient phi i. Fugacity coefficient of the 

component in the solution as distinct from the fugacity coefficient of a pure component, 

which was defined as f by total pressure P. 

Therefore, you could write for an imperfect gas mixture, in terms of the fugacity 

coefficient, mu i equals mu i naught plus R T ln – you replace the f i hat by – phi i p i, 

and p i is nothing but, P y I, the total pressure times the mole fraction. Therefore, mu 

equals mu i naught plus R T ln phi i P y i.  This is all for perfect and imperfect. 
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What we would see more of, in this particular module, is an ideal gas solution.  We had 

an ideal gas and non ideal gas.  Now, we are looking at an ideal gas solution and a non 

ideal gas solution.  We said with this formulation, it is easy to extend them to either 

liquid or solid solutions also, mixtures also.  Ideal gas solution is one for which the 

following relationship holds for every single component, mu i equals a certain mu i hash 

plus R T ln y i; y i is the mole fraction of the component in the ideal gas solution.  mu i 

hash is a function of both the temperature and pressure. But, not necessarily equal to mu 

i naught plus R T ln P. 
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The ideal solution of liquids and solids can also be expressed in the same way: mu i 

equals mu i hash plus R T ln x i, where x i is a mole fraction of the component i in the 

ideal solution of a liquid or a solid.  The equivalent expressions in terms of the fugacity 

coefficients were also given. Now, the non ideality is brought about either by a fugacity 

coefficient for a gas mixture, or an activity coefficient for a liquid or a solid mixture/ 

solution. 
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So, for a non ideal gas solution mu i equals mu i hash plus R T ln phi i y i, and the 

equivalent is given. For a non ideal liquid or solid solution, it was mu i equals mu i hash 

plus R T ln gamma i x i, with gamma i tending to 1 as the mole fraction of the 

component i tends to 1.  This, of course, was expressed in terms of fugacity, and so on 

for equivalent expressions; gamma i is the activity coefficient.  Note that gamma i is a 

function of temperature, pressure, and composition, whereas mu i hash was only a 

function of temperature and pressure. 
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And we said that definition so far for a non ideal liquid or a solid solution works well for 

many solutions. Let us concentrate on liquid solutions – works well for many liquid 

solutions.  But, it does not work so well when one of the components is either a gas or a 

solid at the temperature and pressure of interest of the solution. For example, … many 

solutions of biological interest are of that category. 

For example, the solution of glucose, if glucose is in water let us say, then it is going to 

be a liquid at a certain mole fraction of glucose. But, if you increase the mole fraction of 

glucose to 1, it is going to be pure glucose, which is going to be a solid at the 

temperature and pressure of the solution .Therefore, that formulation will not work.  A 

similar example was that of oxygen.  Oxygen in water is a liquid at the temperature and 

pressure of interest for growing cells. Whereas, oxygen itself, is a gas. So, if you increase 

the mole fraction of oxygen in the solution to 1 then the phase changes, it becomes a gas 

phase at, let us say at higher mole fractions, definitely at a mole fraction of 1. And 

therefore, we need to have a different formulation to be able to handle that.  The same 

formulation that we presented will not be able to handle that. 
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And, we did that by noticing that at the extremes, that is when the mole fraction either 

tends to 0 or 1, the behavior is ideal .We had used that fact, and then we had come up 

with a separate expression for the solvent and a separate expression for the solute; both 

need to be used together in the model for chemical potential.  The solvent is indicated by 

the subscript o and the solute is indicated by the subscript i. 
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For example, mu o equals mu o hash plus R T ln gamma o x o, and gamma o tends to 1 

as x o tends to 1, for the solvent.  And, for the solute, mu i equals mu i hash plus R T ln 



gamma i x i, and gamma i tends to 1 as x i tends to 0. Here this is for the solute.  Both 

these put together as equation 4.9.  

So these are the various models for the chemical potential for the various kinds of 

solutions that we have seen from the ideal to the real; and, we did make a difference 

between the gas and liquid & solid. 
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Now by considering the ideal solution and manipulating the expression mu i equals mu i 

naught plus R T ln f i hat, we came up with an expression. 

(Refer Slide Time: 13:18) 

 



This argument was important there:  We came up with this expression mu i hash minus 

mu i naught equals R T ln f i hat by y i.  We said that the left hand side is independent of 

composition. Therefore, the right hand side should also be independent of composition. 

But, you have a term for the composition y i here.  Therefore, the only way by which the 

right hand side will be independent of composition is if the ratio f i hat by y i remains a 

constant when y i is changed. 

And, we had used that argument to get to this expression: f i hat by y i must be equal to f 

i by 1. f i hat is the fugacity of the component in the solution, and f i is the fugacity of the 

pure component when y i equals 1. And therefore, in such a case, f i hat can be written as 

y i times f i.  It became powerful because we could get an estimate of f i hat – some sort 

of a hypothetical quantity – well, I should not say hypothetical quantity but, not so easy 

to determine quantity – as a function of y i, and the fugacity of the pure component. 

Therefore, there is a way of estimating f i hat by this expression. 
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This was actually called the Lewis and Randall rule.  This, of course, is valid only for an 

ideal solution. In an ideal gas solution the fugacity of each component is equal to the 

mole fraction times the fugacity, which it would exhibit as a pure gas at the same 

temperature and total pressure.  And, this we have already seen. 
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Then, we went into something called partial molar properties which would give us a way 

of handling our initial problem. We said that in terms of volumes – we started in terms of 

volumes – the volume of the final solution may not be equal to the weighted average of 

the volumes of the components.  If we need a formulation to express it that way, that 

would be in terms of partial molar properties. 
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And, we had defined the partial molar property for any property as M i T hash equals 

dou dou n i of M T at constant T, P, and all other n s remaining a constant. This you 



could write for any of the extensive properties U T, S T, H T, A T, G T, or V T.  And, of 

course, it is quite obvious that the partial molar property may not be the same as the pure 

state property at the same temperature and total pressure. 

And the total property, extensive property, can be computed from the partial molar 

properties as the sum over n I, the mole numbers, times the partial molar property of that 

component. You sum them over all the components then you get the total property.  To 

be able to express it this way, was the need to define a partial molar property at all. 
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And, then we wrote the complete set of … the expressions for getting the total properties 

in terms of the partial molar properties. This is total volume, total internal energy, total 

entropy, total enthalpy, total Helmholtz free energy and total Gibbs free energy.  All 

these in terms of the partial molar properties was written down. 
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And, then we went into arguments … with using the expansion of the total derivative d 

M T. … dou M T dou n i at constant T P n j is nothing but, the partial molar property 

here.  Therefore, you get this in terms of temperature, pressure and the number of moles 

variation. 
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And we got this particular expression, which is an useful expression to have: sum over n 

i d M i T hash equals 0.  If you divide this expression equation 4.17 by the total number 



of moles we got sum over x i d M i T hash equals 0.  This is a very useful expression to 

have; this is equation 4.18. 
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And, then we looked at how to estimate the partial molar properties from experimental 

data. The experiments that we are interested in are called mixing experiments, where the 

initial values are measured and the total value upon mixing is measured. 
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For example, if we take volume, since it is easy to imagine, if V 1 and V 2 are the molar 

volumes of the pure components 1 and 2, and V 1 T hash and V 2 T hash are the partial 



molar volumes in a solution containing n 1 moles of component 1 and n 2 moles of 

component 2. 
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Then the difference in volume upon mixing, which is what actually is measured and 

plotted, is n 1 V 1 T hash plus n 2 V 2 T hash – this is the volume of the solution after, 

and this is the volume before.  That is the volume of the pure components n 1 V 1 … the 

volume of the pure component 1, n 2 V 2 … the volume of the pure component 2. Note 

these are molar quantities.  Therefore, when you multiply it by the mole numbers you get 

the total quantity. So after mixing volume, minus volume before mixing that is delta V T, 

which can be transposed into a convenient form to get 1 minus x 2 times V 1 T hash 

minus V 1 plus x 2 times V 2 T hash minus V 2. 
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And, this is what is plotted, delta V, the volume change upon mixing, as a function of the 

mole fraction x 2, if it is plotted, we get a curve something like A G B here.  If we are 

interested in the partial molar volumes at the point E, we said, we draw a tangent to the 

curve at the point E.  We actually proved this: that the intercept of the tangent on this 

axis, when x 2 equals 0, or the distance A C gives the partial molar volume 1, V 1 T 

hash, and the intercept of the tangent on the line on the ordinate of x 2 being equal to 1 or 

the distance D B gives us the partial molar volume of the second component V 2 T hash. 
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And we had gone through expressing equation 4.20 in terms of the derivative and so on. 
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And, we had formulated it in such a way that some of the quantities that we are 

interested in would correspond to distances on the delta V versus x 2 diagram, and 

therefore, we went about proving that indeed or deriving that you can indeed use the 

distances on the delta V versus x 2 graph to find out V 1 T hash and V 2 T hash. 
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Actually what you are finding out is V 1 T hash minus V 1 – that is the intercept, not the 

V 1 T hash itself.  I should correct myself here.  You know, this distance AC is actually 

V 1 T hash minus V 1, and this distance is V 2 T hash minus V 2. 

And, since we know the molar volumes of the pure components, V 1 T hash can be 

computed from this distance, and V 2 T hash can be computed from this distance.  Please 

make that correction. This is the way we went about deriving that particular expression.  

Please look through the derivation one more time; if you have any difficulties … we can 

always discuss. 
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This is the way we showed you, know there is some equality of distances A E is the same 

as C F and therefore, we could cancel the two.  Therefore, V 1 T hash minus V 1 at the 

point E became GE minus GF, … which is FE. FE is nothing but CA, which is the 

intercept of the tangent on the x 2 equals 0 line. Then we worked out an example by 

which we could find out the partial molar volumes for a case of relevant interest. 
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And then, we started looking at the relationship between excess properties and activity 

coefficient.  We first saw what an excess property was. Excess property is nothing but, 

the difference between the actual property and the ideal property, and we said excess 

properties are defined the same way, and play a pretty much the same role as the residual 

properties for pure components; residual properties – we had seen in module 3. You can 

go back and refer to that also.  In other words M R the residual property is defined as M 

the actual property minus M ideal gas. 
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An excess property of a solution is the amount by which its relevant thermodynamic 

property exceeds that of the hypothetical ideal solution of the same composition.  We 

had given this – M T E equals M minus M T ideal gas. 
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Then, we started looking at one of the excess properties, which is the excess Gibbs free 

energy. We had a very specific objective in mind, which was to develop an estimate for 

the activity coefficient using the excess Gibbs free energy.  Then, we said the total Gibbs 

free energy was sum over n i times mu i. 
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And, then we went through the difference between the total and the ideal that gives us 

the excess, which will turn out to be only this term on the right hand side, R T sum over 

n i ln gamma i. 
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Therefore, d G T E, the derivative the total a total differential of G T E, d G T E, by 

chain rule would turn out to be R T times summation over n i d ln gamma i plus 

summation over ln gamma i d n i. 

Then, we went through an interesting derivation, or an interesting proof, where we 

started from a very fundamental Gibbs Duhem equation, and pretty much without any 

assumptions, we actually showed that for any case sum over n i d ln gamma i goes to 0. 

We had worked that out …we had worked that out together, so that it will strengthen 

some of the ideas in you.  Therefore, we were left with d G T E equals R T times sum 

over ln gamma i d n i. 
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This is the process that we went through – a very interesting kind of a derivation. You 

may want to look at it again.  It also shows the level of care, or carefulness that one 

needs to exhibit while doing these kinds of manipulations. 
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And, this is where we brought these two terms in terms of … you know, we had used the 

reciprocity relationships to convert the third and the fourth terms as equivalent to the first 

and the second terms with the opposite signs and therefore, we could get rid of them. 
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And, we were left with just this, which is sum over n i times internal sum over all k, dou 

mu i dou x k at constant T, P, x j d x k equals 0.  What would be easier is if we divided 

throughout by sum over n i then this n i by sum over n i would become x i; here it goes 

to 0 anyway. Therefore it became sum over x i times internal sum over k dou mu i dou x 

k constant T, P, x j d x k equals 0.  From here we had used the expression for mu i as mu 

i hash with R T ln gamma i x i. 
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And an interesting formulation … beautiful actually … the way it turns out, you know, 

these are just writing out all the terms. We need to write, all the terms if we need to do it 

properly. 
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But, for ease we took one term at a time.  Also we had noticed or noted that mu i hash is 

a function of temperature and pressure alone, and this became handy. When we had 

taken the derivative with respect to composition, such terms would vanish because this is 

not a function of composition, whereas gamma i is a function of temperature, pressure 

and composition.  Therefore, all terms would remain there.  
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After going through some more algebra, which we … went through together, we got for 

the first term alone, x 1 times d ln x 1 plus d ln gamma 1. 
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And, if we considered all the terms and combine them appropriately we got x 1 d ln x 1 

plus x 2 d ln x 2 plus … so on x p d ln x p.  p is … remember, the total number of 

components … plus x 1 d ln gamma 1 plus x 2 d ln gamma 2, and so on till x p d ln 

gamma p equals 0. 
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Which can be written as sum over x i d ln x i plus x i d ln gamma i equals 0.  x i d ln x i 

is nothing but, each one of these terms is nothing but, x i times 1 by x i d x i d ln gamma 

is 1 by x i d x i therefore, we could cancel x i, x i to get d x i. 
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And then the sum over all d x i would be d of the sum over all the x i s, which would be 

d of a constant, … which is nothing but 0.  Therefore, we obtained x i d ln gamma i 

equals sum over n i d ln gamma i … just multiplying by the total number of moles, 

which is 0.  This was our equation 4.30. 
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And, from here we could, you know, when we went back to the expression for d G E we 

had those two terms.  We got rid of one term.  Therefore, only one term remains here, d 

G T E by R T equals sum over ln gamma i d n i. This is what we are left with, in a nice 

way.  But, what this also tells us is if you take the derivative, the partial derivative with 

respect to a certain n i with temperature, pressure and all other n s remaining constant, 

then that would actually give us ln gamma i.  We had used this as the basis, to come up 

with models or at least to see the models for obtaining activity coefficients, if G T E by R 

T is known as a function of composition. 
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Earlier, we saw some intuitive models. … Before that I should say we started looking 

only at binary systems, the activity coefficients in binary systems, from then onwards. 
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Earlier, we saw some intuitive models by Margules which gave us G E by R T equals A 

2 1 x 1 plus A 1 2 x 2 times x 1 x 2. 
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By following the differentiation with respect to one of the mole numbers and suitable 

recombination … we could convert it this way or we could do it in terms of x 1 x 2 also; 

that is what we did later but, here we did covert it to n 1 and so on. 
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We got expressions for gamma 1 and gamma 2.  For example, in the case of Margules 

we got ln gamma 1 equals x 2 squared into A 1 2 plus 2 times A 2 1 minus A 1 2 times x 

1, and ln gamma 2 was x 1 squared times A 2 1 plus 2 times A 1 2 minus A 2 1 times x 

2. 

Then we looked at what happens at infinite dilution, ln gamma 1 infinity, just by 

substituting this into the model, we got that ln gamma 1 infinity was A 1 2 and ln gamma 

2 infinity was A 2 1. 
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We also saw the other models, the Redlich-Kister model which is a very simple G E by 

R T equals B x 1 x 2. 
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And, we got expressions for ln gamma 1 ln gamma 2. ln gamma 1 was B x 2 squared, ln 

gamma 2 was B x 1 squared, and also the expressions at infinite dilutions. 
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Van Laar model which is one of the popular models: G E by R T equals A 1 2 dash A 2 1 

dash, A 1 2 dash x 1 plus A 2 1 dash x 2.  A 1 2 dash and A 2 1 dash are constants for a 

given system. 
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And from that we got the expressions for ln gamma 1 as A 1 2 dash times 1 by the square 

of 1 plus A 1 2 dash x 1 plus A 2 1 dash x 2.  And, ln gamma 2 was A 2 1 dash times 1 

by the square of 1 plus A 2 1 dash x 2 divided by A 1 2 dash x 1.  We also saw the 

infinite dilution expressions. 
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Then we started considering the Wilson model.  Apart from the others which had some 

sort of an intuitive bases, the Wilson model was based on a theoretical concept – the  

local composition concept.  The local composition concept, just for information, we are 



not going to look closer at this in this particular course.  It is outside the scope of the 

course.   

The local composition is postulated to account for the short range order and non random 

molecular orientations that result from differences in molecular size and the 

intermolecular forces. If you get into statistical thermodynamics you would need to 

worry about all these things. 

And therefore, this Wilson model has a better grounding in the molecular theory of 

solutions.  So, are many other models such as NRTL, UNIQUAC, UNIFAC and so on 

and so forth … that are available in the literature.  They were developed ages ago, 

decades ago and but, which are very useful for finding out activity coefficients, for 

estimating activity coefficients … from the models. 

(Refer Slide Time: 35:31) 

 

Wilson model was G E by R T equals minus x 1 ln of x 1 plus x 2 times gamma 1 2 

minus x 2 ln of x 2 plus x 1 times gamma 2 1.  gamma 1 2 and gamma 2 1 are the Wilson 

constants for a particular system. 
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And similar procedures as for the other models would yield … this was again left to you 

as an exercise hopefully you did them; if not please do them, and convince yourself that 

this is indeed the case … ln gamma 1 equals minus ln of x 1 plus x 2 gamma 1 2 plus x 2 

times gamma 1 2 divided by x 1 plus x 2 times gamma 1 2 minus gamma 2 1 divided by 

x 2 plus x 1 times gamma 2 1.  And, ln of gamma 2 equals minus ln of x 2 plus x 1 times 

gamma 2 1 minus of x 1 times gamma 1 2 divided by x 1 plus x 2 times gamma 1 2 

minus gamma 2 1 divided by x 2 plus x 1 times gamma 2 1. 

This is actually the same in both these expressions, the second combination term.  And 

we saw the expression for infinite dilutions also. 
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Then we worked out an example. This example was deliberately chosen to tell you 

something more.  The first one is a direct calculation. … The example was with respect 

to isopropanol. Isopropanol has many biological applications.  To design the distillation 

process for purifying isopropanol, the activity coefficients are required.  Compute and 

compare the activity coefficients for an isopropanol water system with mole fraction of 

isopropanol being 30 percent, using the following data taken from the literature – the 

Van Laar constants and the Wilson constants for a particular condition were taken from 

the literature. 
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We went through the calculations.  You went through it first, then I showed it to you.  

We found that in the Van Laar model we got gamma 1 was 1.331 and gamma 2 was 

1.119, whereas, … using the Wilson model we got a gamma 1 of 1.965. 
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And, gamma 2 of 1.276.  Of course, different models would give different gamma 

values. … To get better and better estimates, different models were developed, or better 

and better models were developed. And some of the model names we saw in the earlier 

part of this particular subsection itself.  This is what we did in terms of thermodynamics 

for solutions or of solutions in this particular module. When we begin the next module 

… There are two more modules that we will look at in this particular course. The first 

module or the fifth module in the sequence is on phase equilibria and the sixth module is 

on reaction equilibria.  

We will use whatever we have developed so far. This will give you a flavor.  After a 

review, we looked at thermodynamic properties. We defined thermodynamic properties, 

and presented ways of manipulating them, getting useful information from whatever is 

available easily and so, on and so forth. 

And then we also found that there were ways of expressing the not so easy to measure 

thermodynamic variables in terms of easy to measure thermodynamic variables, P, V, 

and T.  Then, we looked at the thermodynamic aspects of pure substances, and 

thermodynamic aspects of solutions.  Then we are going to use all of those in predicting 



phase equilibria, and coming up with relevant useful predictions for reaction equilibria 

also.  That is what will follow.  See you in the next class. 


