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Welcome! to this lecture.  

In the last lecture, we saw the different criteria for thermodynamic equilibrium across 

various phases. That is what is given here; this is what saw in the last class. This is the 

fundamental requirement for thermodynamic equilibrium. If alpha, beta, gamma are 

various phases in equilibrium, the temperature across the phases or in each of the phases 

must be equal. In other words, T alpha equals T beta equals T gamma, and so on. This is 

equation 5.1. The second condition was that the pressures in the various phases must be 

equal to each other; P alpha equals P beta equals P gamma and so on. And the chemical 

potential of each of the species present in the various phases must be equal to each other. 

For example, if mu 1 is the chemical potential of the species 1, mu 1 in alpha must equal 



mu 1 in beta must equal mu 1 in gamma and so on across all the other phases that are 

present. mu 2, which is a chemical potential of species 2 in the alpha phase must equal 

mu 2 in the beta phase must equal mu 2 in the gamma phase, and so on. 

 And, we can write one such equation for each of the species that are present or each of 

the components that are present. So, if you look at this, if there are C components that 

are present, we will have C such equations.  Not just that; we also saw that each one 

these equations is actually a composite of … if pi is a total number of phases … pi minus 

1 equations. For example, T alpha equals T beta is one equation, T beta equals T gamma 

is another equation, and so on and so forth.  Therefore, if there are pi phases, there would 

be pi minus 1 different equations here. And that is valid for each one of these composite 

equations. This is what we saw in the last class – very fundamental. So, it is good go 

over it again. 
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 And then, we also saw the phase rule for non-reacting systems. The way we went about 

deriving the phase rule was if we are considering a system, containing pi phases and the 

number of components is C,  
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then, we saw that the number of equations between variables was pi minus 1 into C plus 

2. 

 (Refer Slide Time: 03:10) 

 

We saw earlier the number of variables was pi into C plus 1. And we know from 

mathematics that, if the number of variables equals the number of independent equations 

in a system or in a set, then we have a unique solution.  Or, at least the number of 

variables must be greater than the number of independent equations connecting them. 

Only then will we have a possibility of realistic or meaningful solutions.  If the number 



of variables is less than that … it is not something that we would prefer. Therefore, this 

is the condition that we looked at: the number of variables pi into C plus 1 in a system 

that we considering, must be greater than or equal to pi minus 1 into C plus 2, which is 

the number of independent equations between them.  … When we transposed this into 

getting 0 on the right hand side, then we got C minus pi plus 2 must be greater than or 

equal to 0. In other words if we have C minus pi plus 2 equal 0, we have a unique 

solution set. And, if we have C minus pi plus 2 is greater than 0, then if we are able to 

supply that many number of variables, then the system is uniquely defined. This is 

essentially what this means. 
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This … brought us to the concept of degrees of freedom – this is where it arises from – 

the degrees of freedom was C minus pi plus 2; that we saw earlier.  This is nothing but 

the number of variables that are short … in equating the number of variables to the 

number of independent equations that are available. Therefore, if we supply these 

variables, the F number of variables, then the system is uniquely defined. Therefore, the 

application of phase rule tells us the number of independent variables that are required to 

completely specify the state of the system, if the number of phases and components are 

known. Then, we worked out an example, and we started looking at the Clausius-

Clapeyron equation.  
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We said that the Clausius-Clapeyron equation is valid for any two different phases.  We 

will typically use this when there is a phase change that is occurring – phase change at 

equilibrium. Therefore, we are looking at vapour-liquid, solid-liquid or solid-vapour 

phases; these are the three phases that we are look at in this particular course. And, we 

said that, at equilibrium, the chemical potential of a certain component between the two 

phases must be equal.  Therefore, we mu alpha 1 must be equal to mu beta 1. This ‘1’ 

determines the conditions of temperature and pressure that are specified at that particular 

point. So, mu alpha 1 equal’s mu beta 1 is the basic criterion.  
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And, then we went about deriving d mu alpha equal’s d mu beta.  If consider mu as a 

function of temperature and pressure, easily measurable variables, then, this total 

differential can be written in terms of the partial differentials; that we have already seen.   

dou mu alpha douT at constant P dT plus dou mu alpha dou P at constant T dP equals 

dou mu beta douT at constant P dT plus dou mu beta douP at constant T dP.  

And then we took a detour, and I realized that have not told you why we took the detour. 

We took the detour essentially to express the temperature-pressure functionalities of the 

chemical potential in terms of the other variables, on which we have a better handle. That 

is a reason, and also, we are going to establish one other relationship, where it becomes 

easy for our manipulations later on. 
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When we took the detour, we … started to consider this equation 2 15: dG T equals 

minus S T dT plus V T dP plus sum over mu i dn i. And then, when we employed the 

reciprocity relationships that we picked up in module two over two combinations, I mean 

two parts of this equation the right hand side at a time, … we got that dou mu i dou P at 

constant T and n i was dou V T dou n i at constant T, P, all other n j’s. And by definition, 

this was nothing but the partial molar volume. And, similarly, we got the temperature 

functionality as partial molar entropy. Therefore, these where the terms in the previous 

equation, if you recall … we will write that again.  Therefore, we will take look at that. 
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Then, we also derived dou mu i by T douT at constant P n i equals minus H i T hash by T 

squared. 
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So, this is where we left off in the last class.  The earlier equations that we are derived 

were for a generic system with n number of moles, and so on. And then, we started to 

consider a pure substance.  For a pure substance, we know that the partial molar 

properties are nothing but the properties per mole of the pure substance. And therefore, 

the equivalent equations, you know, the temperature, pressure functionalities of mu as 



well as the dou mu by T expressions that we saw earlier, turn out to be these special 

equations for 1 mole of a pure substance. dou mu douP at constant T equals V –  just the 

molar volume, dou mu douT at constant P equals minus S, and dou mu by T douT at 

constant P turns out to be minus H by T squared. This is where we left off last time, and 

now what we will do is we will substitute these … remember, this was a detour … we 

will go back from the detour to … considering the case of equilibrium of a pure 

substance between two phases. 
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This was the equation that we had gotten by equating dmu alpha equals dmu beta; that is 

what fell down. And, this was equation 5.10, at which point we took a detour. Now we 

are going to substitute for these expressions in terms of 5 16, 5 17.  dou mu alpha douT 

at constant P was nothing but minus S alpha that we saw for 1 mole a pure substance. 

Therefore, minus S alpha dT, plus dou mu alpha douP at constant T, we found was V 

alpha the molar volume in the alpha phase of the pure substance, dP.  This equals minus 

S beta dT plus V beta dP. … Taking dP dT and writing as a derivative – these are 

differentials and we are getting the derivative from that. 
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 If we do that, dP dT equals S alpha minus S beta by V alpha minus V beta.   Earlier, 

these were differentials, which can be interpreted as small distances on a graph –  a 

geometrical interpretation.  And we know that that (dP dT) can be interpreted as a 

derivative, as long as the dimensions that are considered are extremely small – in the 

limit that tends to 0, and so on.  dP dT equals S alpha minus S beta divided by V alpha 

minus V beta; we will call this equation 5.19 or 5 19.  This is a nice expression, but this 

is not very useful. So, we will make it a little more useful.  Because P, T, and V are fine; 

we also have entropies here which are not very easily measurable or as easily measurable 

as P, T and V are. 

To do that, let us consider this.  At equilibrium, the transition between the two phases 

can be considered to be reversible. You know the rate of one process in one direction 

equals rate of the other process in the other direction, and so on. And it is a good 

assumption to consider that process as reversible. If we consider the process as 

reversible, we can use the second law statement and the second law definition. And, also 

… we will consider this a little later.  Just by considering the second law conditions, we 

can write S alpha minus S beta that is delta S, in this case, as Q reversible by T.  This 

was the statement of the second law, and that we are applying to this particular case of 

phase change, Q reversible by T. And now let us bring in this fact; the heat goes only 

towards changing the phase. And therefore, this Q reversible can be replaced by the 



difference in enthalpy between the two phases. This nothing else that is happening there 

the heat interaction goes directly toward changing the phase.  

Therefore, the Q reversible for this particular process can be replaced by the delta H 

which happens to be H alpha minus H beta. Therefore, S alpha minus S beta becomes 

equal to H alpha minus H beta by T which can be written as L by T, where L is the latent 

heat of the phase change.  We will call this equation 5 20.  Note that this is latent heat for 

the phase change, and it is not limited only to the liquid to vapour change, which is 

typically given in textbooks to begin with. This is applicable for the latent heat of 

vapourisation, latent heat of melting or sublimation. 
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Therefore we can write equation 5 19, as dP dT … we are going to replace the S alpha 

minus S beta by L by T delta V.  delta V was V alpha minus V beta, the change and 

specific volume between the two phases. Let us call this equation, 5 21. This equation is 

called the Clausius-Clayperon equation, and this valid for phase changes, as we had seen, 

because those were the conditions under which we derived it. We had assumed 

equilibrium conditions for a phase change and reversible conditions for a phase change 

and derived this.  This is valid for any phase change.  Going by the left hand side dP dT, 

it can be interpreted as the change in pressure per unit change in change in temperature 

that is needed to maintain equilibrium.  Slightly abstract … take a look at it for now, and 

then it will make sense probably much later. 
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For the vapour-liquid equilibria or vapour-solid equilibrium, the difference between the 

vapour volume and the liquid or the solid volume is negligible.  You know, the vapour 

volume of a unit amount or a unit mass of a certain substance is typically tens of times 

the liquid volume; typically about thirty to fifty to eighty times the liquid volume for a 

unit mass of the substance. And there is a certain ratio here, which is quite large for 

vapour to solid also. Therefore, this delta V, if you can recall, was nothing but … in the 

case of vapour-liquid equilibria, V vapour minus V liquid, or V gas minus V liquid.  We 

can replace the delta V by approximately V volume of the gas itself.  

We are essentially neglecting the volume of the liquid or the solid here. And volume of 

the gas can be approximated, if the gas can be considered to behave ideally.  You know, 

under conditions of normal temperature and pressure, this is a reasonably good 

assumption, except if you are dealing very tricky gases. Therefore, the volume of gas … 

we are going to use the ideal gas law and express it as RT by P; we will call this equation 

5 22. And if we substitute this 5 22 into the Clausius-Clapeyron equation, 5 21, we get 

dlnP by dT equals, approximately equals, L by RT squared. Let us call this equation 

5.23.  If you are not able to see this, let us just go back a little bit. 
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Now, what we have done essentially, here, is replace delta V by V gas; this was RT by P. 

And therefore, if we combine all Ps together, we get dP by P equals L by TV of the 

vapour times dT.  Integrating that dP by P we get the log term there, and the other terms 

make sense. 
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Therefore, we get dlnP by dT equals L by RT squared.  This is typically a very good 

approximation as long as the vapour pressure is not very large. If vapour pressure is large 

then be careful in using this approximation.  
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We have looked at conditions for equilibrium, the phase rule which are very fundamental 

aspects. And then we looked at Clausius-Clapeyron equation, for the phase change.  Let 

us work at an example. This example will take time to work out, I will first read out the 

problem. I will give you say about 15 minutes to think about it and work out the initial 

aspects. And then I will give you more time with hints to work out the final solution.  

Let me read out the problem first. Isopropanol … you know by now … our popular 

substance, is evaporating under pure substance conditions at 87.4 degree C and 1 bar. It 

is evaporating under pure substance conditions, which means that the temperature and 

pressure correspond to points of the vapourisation line in a PT diagram. Assuming 

equilibrium conditions, what is the change in pressure per unit change in temperature 

that is needed to maintain equilibrium? And the data that is given here is that, the latent 

heat of vapourisation for isopropanol is minus 44 kilojoules per mole.  

There is a certain background to this. I would like to share that here. I had assigned my 

students, when I taught this course for the first time to come up with problems, because 

that is good way of learning the subject itself at a much higher level, and also it will 

contribute to other aspects such as this.  This happens to be a modified form adapted 

from a problem formulated by one of my students, Akhil Sai Valluri. Please go ahead; 

take 15 minutes and figure out how you would go about approaching the problem. Then I 

will give you some hints. 



(No audio from 20:50 to 35:25) 

You would have had time to think through this, and hopefully the thought became 

focussed towards recognizing that this is a substance evaporating under pure substance 

conditions, or substance evaporating. Therefore, it is changing its phase from liquid to 

vapour.  Therefore, it is a case of phase change. And what is required is change in 

pressure per unit change in temperature that is needed to maintain equilibrium. 

Therefore, the whole process is under equilibrium conditions.  
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So, what does this bring to mind?  Definitely the Clausius-Clapeyron equation. In fact, 

the left hand side of the Clausius-Clapeyron equation dP dT is … this of course, the right 

hand side L by T delta V … dP dT is what is required to be calculated as a part of this 

particular problem. If you can find dP dT by evaluating the right hand side… In other 

words if we know L T delta V, we can substitute the values here and find dP dT, and that 

is what we need.  L is already given – that is the latent heat of vapourisation. So, if we 

find T delta V … T is also given; it is known from the problem statement. It is the 

temperature at which the vapourisation is taking place. Therefore, if you find delta V 

then we are actually done. So, how do you go about finding delta V is the hint that I am 

going to leave you with for another 15 minutes or so … let us say about 10 minutes, and 

let us see how you come about with the solution. 
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Hopefully you would have figured out how to find out delta V. Since we are almost out 

of time; I am just going to give you some hints, give you time to work it out and show 

you the complete solution when we meet the next time.  delta V is nothing but V of the 

vapour minus V of the liquid, or V of gas minus V of the liquid. 

 Therefore, you need to find a way to figure out what the molar volume of the gas phase 

is, and molar volume of the liquid phase is. What does this bring to mind?  Does this 

bring to mind something to do with equations of state?  That is exactly what we are 

looking at.  So, go back to what equations of state are. And this is isopropanol here.  See 

whether you are able to find out the molar volume of the vapour and the molar volume of 

the liquid under the saturated conditions of the liquid-vapour transition. Please take this 

as homework.  When we meet the next time, when we begin the class, I will give you the 

solution. 


