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Welcome back!  

In the last class, we had started looking at the specific equilibrium, which is the vapour-

liquid equilibrium. We are going to derive useful relationships at vapour-liquid 

equilibrium conditions. We had already looked at a pure substance in vapour-liquid 

equilibrium. 
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We said that the conditions of equilibrium need to be valid, therefore T v equals T l 

equal say T sat, and P v equals P l equals say P sat. This we … want to take as a given, 

and mu v equals mu l – that is what we said.  
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We looked at this particular equation further, and using the expansions or the definitions 

of the chemical potential in terms of fugacity that we had developed in, or that we had 

given in module 3, we wrote mu naught plus R T ln f v for mu v equals mu naught plus 

R T ln f l for mu l.   … We could see that the fugacities are equal …. of the pure 

substance in the vapour phases and the liquid phases. 
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From this and just the definition of the fugacity coefficient we could write a relationship 

between the fugacity coefficient and pressure, phi v P v equals f sat.  Or, in other words, 



phi sat you know phi v is nothing but, the value at the saturated value under the 

conditions of vapour-liquid equilibrium, phi sat P sat equals f sat.  This was equation 

5.28, and what was the left as an assignment for you was to develop similar expressions 

for a multi-component system. This is … for a pure component system, and you are 

asked to develop equations for a multi-component systems.  Hopefully, you could do 

that. 
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And, let us see how they look at, now.  From … mu i v equals mu i l, for a multi-

component system, that is a chemical potential of the species i in the vapour phase must 

equal the chemical potential of the species i in the liquid phase. And if you expand it as 

mu naught plus R T ln f i v hat, you know that is how we write … the chemical potential 

is related to fugacity in the case of a multi-component system. Therefore, f i v hat equals 

f i l hat is what follows from mu i v equals mu i l we will call this equation 5.29.   Using 

equations 4 7 and 4 8 from module 4 … you will realize what those expressions are; mu i 

equals mu i hash plus R T ln phi i y I … you know this is what we got in 4 7 and 4 8.   

That is mu i naught plus R T ln phi i P y I –  4.7, and mu i equals mu i hash plus R T ln 

gamma i x i. This is for the liquid phase and this is for the vapour phase. … For the 

liquid phase, this further equals mu i naught plus R T ln gamma i f i x i.  This is equation 

4.8, or this was equation 4.8. We said that this is the condition, and if we even if we do 



not look at it … if we just go ahead and equate these two, … mu i naught, mu i naught 

will cancel out; R T, R T will cancel out.  

Therefore, phi i P y i equals gamma i f i x i.  This equation 5.30 is the condition for 

equilibrium … for a species i. You can write this for a species i at vapour-liquid 

equilibrium conditions. So, hopefully you would have gotten at this.  If not, this is the 

kind of expression that we were looking for. 
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 Now let me give you some sort of a real world example, and give you some time to 

work it out.  The answer is very simple, but it requires some bit of thinking.  So, I am 

going to give you enough time for that.  The example 5.3 reads as the volumetric oxygen 

transfer coefficient, k L a, of a bioreactor – volumetric oxygen transfer coefficient is 

denoted as k L a – k L a of a bioreactor is typically measured without cells being present 

in the broth.  Air is bubbled through the broth, and the oxygen gets transferred from the 

gas bubbles to the liquid broth.  

At the end of the estimation, the oxygen concentration no longer changes in the broth or 

the bioreactor head-space. Under such conditions, based on what has been learnt in the 

module, what can you say about the relevant thermodynamic property of oxygen? I have 

worded it this way for a specific reason, I would like you to go through what we have 

covered in this module and come up with the solution.  The solution is a very, very 

simple. It is a straightforward thing.  It is a very simple thing, but it will require some bit 



of thought especially, when you are doing it for the first time. And I will just show you 

the solution when we come back. 
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Hopefully you got that simple solution.  If not, the thinking is something like this:  under 

the conditions given in the problem equilibrium exists between the phases. Note that 

there was oxygen that was transferring from the gas bubbles to the liquid phase.  And 

then, after a while, there was no consumption of oxygen anyway, and therefore, the 

concentration of oxygen in the broth is not going to change.  

Therefore, consequently, the head-space oxygen concentration is also going to remain 

the same. Therefore there has been a condition of equilibrium reached between the liquid 

and the vapour phases.  Or oxygen in the broth and oxygen in the vapour phase reaches a 

… certain state of equilibrium.  These are the phases that are of interest here, the vapour 

in the head-space and the liquid in the broth. We are interested in the thermodynamic 

property under such conditions.  Of course, the temperature and pressure you need to 

appropriately look at. But, we are not really going to focus on that.   

From one of the conditions of equilibrium, equation 5 26, we can write the relationship 

for the chemical potential of oxygen. This is what we are looking for, and this is what we 

are going to write.  The relationship for the chemical potential of oxygen is going to be 



that, the chemical potential of oxygen in the vapour phase must equal the chemical 

potential of oxygen in the liquid phase. This is the condition that will be valid, under the 

situation given in the problem.  And, from this you can come up with something useful, 

but that is not in the scope of this particular problem. 
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So, you would have had a chance to look at whatever we have developed in the context 

of a real situation. Let us move forward.   

What we are going to see next is the estimation of the fugacity coefficient from the 

pressure, specific volume and temperature data at equilibrium. Note that we have already 

seen a method of estimating the fugacity coefficient at the end of a previous module. 

And this is going to be another method from the P V T data at equilibrium. 
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So, we are going to use the condition of equilibrium to devise a method to estimate the 

fugacity coefficient.  For a pure component, we have already seen this equation in 

module three, d mu equals V d P under certain conditions, this was 3 53. And, d mu 

equals RT d ln f.  This was equation 3.54; f being fugacity. So since these are equal, if 

we equate these two, we would get R T d ln f equals V dP.  Let us call this equation 5.31. 
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If we integrate this expression between saturated value and a particular pressure, let us 

say, P 1, we would get … this is R T d ln f; we are going to integrate between a saturated 



pressure and a certain P 1. Therefore, we will have to integrate the right hand side also. 

First, let us see the left hand side.  d ln f – therefore, ln of f by f sat, ln f minus ln f sat, 

which is going to be ln of f by f sat.  That equals 1 by R T integral from P sat to P 1 V 

dP. Let us call this equation 5.32.  If you recall, this is the molar liquid volume. The 

molar liquid volume is typically a weak function of pressure.  At the temperatures well 

below the critical point, we really do not have to worry about its variation with pressure.   

Therefore, for all practical purposes of interest, this V can be taken to be a constant in 

this particular integral – is a very good approximation.  What we are going to do now is 

to avoid the … confusion between the vapour and the liquid phase volumes. We are 

going to use another subscript l to represent or to make it clear that it is the molar liquid 

volume. Therefore, we are going to call it as V l – this is actually a superscript; 

superscript l, and we are going to call it as V l. Therefore, we will get ln of f by f sat 

equals … this is 1 by R T, … V l is a constant that has come out. Therefore, V l by R T 

and integral of P sat to P 1 dP is nothing but, … P 1 minus P sat – we just going to drop 

this `1’ here. 
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Therefore, P minus P sat.  Or f by f sat equals exponential of V l into P minus P sat by 

RT.  Earlier, there was a log here. Therefore, f by f sat becomes exponential of the right 

hand side.  Let us call this equation 5.33. And while we are doing all this, our main aim 

is to get at an estimate of the fugacity coefficient. Let see, how to go about doing that.   

This right hand side of this expression is actually called as the Poynting factor.  f by f sat 



equals this exponential of V l P minus P sat by R T – this is the Poynting factor.  Further 

using equation 5.28 become clear right now.  phi sat P sat was f sat?  Now, this is again, 

a pure substance. 
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So phi sat P sat equals f sat is valid here, this was 5.28. We can write 5.33 as f equals phi 

sat P sat exponential V l, P minus P sat by R T .Now f sat f by f sat was exponential V l 

P minus P sat by R T. Therefore, f equals f sat exponential V l P minus P sat by R T.  We 

have just replaced f sat by phi sat P sat.  Let us call this equation 5.34. Now, phi is 

nothing but the fugacity coefficient, which is nothing but f by P. Therefore, the above 

equation can be used to find the fugacity coefficient of a pure component. And that we 

have somehow arrived at.  But, let us clarify that a little further.  
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That was for a pure system.  We need … to look at a multi-component system – that is 

what I meant by clarifying further – we need to do it for a multi-component system.  For 

a multi-component system, this equation 5.30 is valid, which is phi i P y i equals gamma 

i f i x i.  This is what we derived … in fact, you had derived, for a multi-component 

system the condition for equilibrium being this phi i P by i equals gamma i f i x i; 

equation 5.30.  

Note that the f which is fugacity of a pure component equals f i which is the fugacity of 

the pure component i at the same temperature and pressure as that of the solution; that is 

the fugacity when y i equals 1, when the mole fraction equals 1.  

Therefore, using equation 5 34 to substitute for f i in 5 30, we get phi i P y i that is a left 

hand side, equals gamma i – same as gamma i here, x i – same as x i here, instead of f i,  

we are going to write phi i sat P i sat exponential of V i l into P minus P i sat divided by 

R T.  We just substituted f i with the one that includes the Poynting factor here, which 

can further be written as phi i into P y i which is the left hand side equals gamma i P i sat 

x i. 
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Now, … if you are able to see this … let me show you what phi i is.  Then it will become 

easier.  This is what we have here. We have written this expression as … let us call this 

phi.  This is not phi … let us call this fy…  fy i into P y i equals gamma i P i sat x i.  This 

means the remaining terms have all been combined into fy i which is what will be shown 

here, where fy i equals phi i divided by phi i sat exponential of minus V i l P minus P i 

sat by R T. Let us call this equation 5.36.  

What usually happens is that the exponential term is close to unity at pressures of 

relevance to most biological systems, which is typically atmospheric pressures and so on 

and so forth. Therefore, this term can just be replaced with a 1 for most biological 

systems.  The following approximation works very well which is fy i equals phi i by phi i 

sat – equation 5.37. 



(Refer Slide Time: 47:28) 

 

The value of fy i can be estimated from the second virial coefficients. Remember that B 

1 1, B 1 2 and so on so forth; we can use that to estimate fi i, I am just going to state it 

here.  I am not going to derive it here.  Derivation requires probably some understanding 

of statistical mechanics. So, since that is outside the scope of this course, I am just going 

to mention this here.  fy i equals this complicated expression. Let me just read it out to 

you … equals exponential of B i i P minus P i sat plus half and twice sum over j and k y j 

y k 2 delta j i minus delta j k. I will tell you what deltas are delta 2 delta j i minus delta j 

k divided by R T. This is equation 5.38, where delta i k equals 2 B i k minus B i i minus 

B k k and delta i j equals 2 B i j minus B i i minus B j j, and delta i i equals 0, delta k k 

equals 0, and delta k i equals delta i k.  Therefore, there is a way of estimating this fy i 

from the second virial coefficients. And going back, you can get the other quantity that 

we are looking for.   

What we did in this particular section is to look at a way or a method of estimating the 

fugacity coefficient from the conditions of vapour-liquid equilibrium. Since the other 

things are slightly different, let us start them in the next class. We will stop here for this 

class. See you then. 


