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Welcome!  

In the last class we looked at the temperature dependence of the equilibrium constant. 

We had looked at two equilibrium constants, K p and K f.  All those were valid for gas 

phase reactions. 
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… What we are going to start doing in this class is to consider equilibrium constant for 

reactions that occur in liquid or solid solutions. To derive an expression for the 

equilibrium constant in solutions, let us begin with the same equation that is the equation 

6.14, which is sum over nu i mu i equals zero. This is the criterion for reaction 

equilibrium; this is something that we said is very fundamental good to remember and so 

on. Simple – sum over all i nu i the stoichiometric coefficient times the chemical 

potential of the various species i mu i equals zero.  If, we substitute the expression for the 



relevant chemical potential … this is for liquid or solid solution. Therefore, you know 

that it is going to be mu i mu i equals mu i hash plus R T ln gamma i x i; that is how we 

characterize the liquid and solid solutions. If we do that sum over i nu i and we are going 

to replace mu i with mu i hash plus RT ln gamma i x i; this equals zero. Let us call this 

equation 6.43. 

(Refer Slide Time: 01:58) 

 

Which can be expressed as … I am just going to expand the terms here … sum over all i 

nu i mu i hash plus RT sum over nu i ln gamma i x i.  RT is a constant. Therefore, I have 

taken it out here.  This equals zero.  Or you could write this as sum over i nu i mu i hash 

equals minus RT ln … I have taken the ln out here; or, before that ln of nu i ln of gamma 

i x i which is nothing but ln of gamma i x i raised to the power nu i.  … If I take the log 

out, the sum of the log is nothing but the log of the product of the various things and 

therefore, log of the product over all i gamma i x i the whole raised to nu i. We will call 

it equation 6.44. 
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Now, if we define the same way that we did for K p and so on, if we define the product 

over all i of gamma i x i raised to the power nu i as a certain K, equation 6.45. This is the 

equilibrium constant for reactions occurring in solid or liquid phases. Then, we can write 

our previous equation as minus RT ln K equals sum over i nu i mu i hash. Now, are you 

able to see the relationship or the similarity between this expression 6.46 and minus R T 

ln K p equals sum over i nu i mu i naught?   That was mu i naught, this is mu i hash.  

There it was a function only of temperature mu i naught, but here since mu i hash is a 

function of both temperature and pressure, you expect the equilibrium constant, here also 

to be a function of both temperature and pressure – think, I say that here. Since, mu i 

hash is a function of temperature and pressure, K can also be expected to depend on both 

the temperature and pressure. 



(Refer Slide Time: 04:27) 

 

Now, to find the temperature pressure dependence, let us start by a rearranging equation 

6.46 as R ln K equals minus sum over i nu i mu i hash by T. The total differential of K, 

since it is a function of both the temperature, and pressure is given as R d ln K. I am 

taking the total differential here.  R is just a constant. R d ln K can be written as a 

function of temperature and a function of pressure.  To do that, what I have done here is 

see here there is a sum … there is a minus here first, and then there is a sum here. … 

Inside the sum, each of these can be nu i which is not, of course, a function of 

temperature and pressure. Therefore, that is taken as a constant out here, whereas, mu i 

hash by T is … a function of both temperature and pressure. 

So, that is written as the total differential here in terms of the partial derivatives dou dou 

T of mu i hash by T dT plus dou dou P of mu i hash by T dP. Therefore, R d ln K equals 

minus of sum over i nu i dou dou T of mu i hash by T dT plus dou dou P of mu i hash by 

T dP. Again respecting the functionalities … in other words, it means just combining the 

various terms together, we can write this as R d ln K equals minus sum over i nu i dou 

mu i hash by T dou T dT.  And, this is not going to vary with pressure. Therefore, you 

can take 1 by T out as a constant here. So, 1 by T dou dou P of mu i hash dP. Let us call 

this equation 6.47. 
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By following a reasoning that is similar to the one used to obtain 6.41, but for solutions 

… in other words we had obtained 6.41 for the gas phase reactions. Here, we are going 

to follow the same reasoning, but for solutions, and further by differentiating mu i with 

respect to P instead of T.  … This is what I would like you to do, and the hint here is that 

you will get it in terms of delta V, and so on. I will give you about … since you are 

already used to it may be about ten minutes.  Just look at 6.41 … go back and look at 

6.41. Go a few steps before that; see how we got that.  Use the same reasoning to get this 

particular expression.  Ten minutes. 

(No audio from 07:29 to 15:33)  

You would have obtained R d ln K equals delta H by T squared dT.  Essentially, we have 

replaced the partial derivatives in terms of the expressions or thermodynamic variables 

and the relationships we had derived earlier. So, this first derivative gets replaced by 

delta H by T squared dT and the second derivate gets replaced by delta V by T dP. 

Therefore, R d ln K equals delta H by T squared dT minus delta V by T dP. Doing such 

exercises, small exercises, also breaks the monotony of just listening to this and getting 

actively involved in the process; thereby, the learning is that much better. We will call 

this equation 6.48 and of course, the delta V is the volume change of the reaction mixture 

due to the reaction. 
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From equation 6.48 which is this, we can write dou ln K dou T at constant P equals delta 

H by R T squared – not quite easy to see that … we are writing total derivative in terms 

of the partial derivative.  d ln K equals dou ln K dou T at constant P dT plus dou ln K 

dou P at constant T dP. So, just comparing the terms here we get dou ln K dou T at 

constant P equals delta H by RT squared, equation 6.49, and dou ln K dou P at constant 

T equals minus delta V by RT. We will call this equation 6.50. 

 Equation 6.49 and 6.50 can be used to determine the effect of temperature and pressure 

on the equilibrium constant. So, that is what we set out to do, and we have done that 

here. Usually, the pressure dependence is rather weak; rather the pressure dependence of 

the equilibrium constant is rather weak.  It is good to know that also.  
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Now, we have looked at equilibrium constants of various reactions, the effect of 

temperature on the gas phase equilibrium constants, the effect of temperature and 

pressure on the equilibrium constants for reactions that occur in the liquid or solid 

phases. Now, let us work out an example.  There are three examples one after another, 

deliberately. The reason for having these examples is that these involve clarity in the 

concepts that you had learnt in the earlier classes also. So, this is some way of refreshing, 

because you need to know that as a part of thermodynamics of reactions. And therefore, 

we are going to kind of review that in the context of the problem.  

We are going to see and understand better whatever is required to solve these problems. 

But the point that I am trying to make here is that you will need principles, clarity of 

principles that you had learnt much earlier in your twelfth standard and previous courses 

on chemical thermodynamics to be able to do these examples. Because of that I am going 

to give you significant time to do this before I present the solution. And example 6.1 the 

first one of the three, we will do one today and may be the other two in the next class. 

This is in the context of course, bio-systems.  In a cell undergoing balanced growth at 

twenty five degrees C, which can be considered as being at steady state for short times 

compared to the times of growth. The concentrations of ATP … recall what ATP is? 

Adenosine Tri-Phosphate, the energy currency of the cell.  

ATP, it is a nucleotide, if you recall the type of molecule – ADP, adenosine di-phosphate 

and inorganic phosphate. I am sure, now you recall the relationship between ATP, ADP 

and inorganic phosphate from your biochemistry course. The concentrations of ATP, 



ADP and inorganic phosphate, P i, at a particular time were found to be ten power minus 

three molar, ten power minus four molar and ten power minus two molar, respectively. 

The  pH inside the cell can be taken to be 7, this is a reasonably good assumption. 

 For example, the pH inside a mammalian cell varies anywhere from about 7.2 to 7.3. 

Typically, the pH is very well regulated inside the cell, except if there is a drastic change 

in the function of the cell. For example, when the cell goes into hibernation, which is a 

very drastic change, then there is a change of about 0.8 to 1 unit in pH. For metabolic 

activities, there is a change of about 0.2 units, and so on and so forth, as the activity 

proceeds.  And sometimes, it is as high as about 0.5 units.  But, for the purposes of this 

particular problem we will consider the pH inside the cell as a constant. 

The standard delta G dash value at physiological conditions, there is a whole meaning 

attached to this delta G dash value.  It is not the same as delta G naught value. I hope you 

recall that at physiological conditions that it is delta G dash.  What is physiological about 

it? You must be able to recall; it is minus 7.7 kilocalories per mole, and calculate the 

delta G, the Gibbs free energy change for the hydrolysis of ATP under the above 

conditions. What I would like you to do is take about twenty minutes to this.  It is going 

to take your time, first to recall whatever is required.  It is quite a simple calculation, if 

you know what is needed. But it is going to take your time to recall those – go back to 

your notes, check that of the previous courses and so on. So, take about twenty minutes 

or maybe even twenty, twenty five minutes and then come back with the solution. I will 

present the detailed solution after you come back. Go ahead, please. 

(No audio from 22:35 to 42:41)  

You would have recalled quite a few principles from the earlier course. Let us see what 

these are or what is required to solve this particular example. 
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From earlier courses, we know that for a reaction, delta G equals delta G naught plus RT 

ln of the product of the product concentrations raised to the power of the appropriate 

stoichiometric co-efficient or the relevant stoichiometric co-efficient, divided by the 

product of the reactant concentrations, each raised to its own stoichiometric co-efficient. 

In other words, delta G equals delta G naught plus RT ln product of C i nu i.  As you can 

recognize now, our convention of nu i being positive for products and negative for 

reactants automatically takes care of this particular formulation here. 

Now, recall that delta G naught is defined at standard conditions of temperature, which is 

twenty five degree C and pressure, which is one atmosphere. And, more importantly in 

the context of whatever we are going to discuss now, when all the concentrations that is 

the concentrations of products as well as reactants are each at one molar concentration.  

hat is how delta G naught is defined. But what is the problem with this? It is perfectly 

fine for chemical reactions, but what is the problem with this for biological reactions? 

Would you recall? 
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The problem comes about whenever hydrogen ion is involved in a reaction, which is 

pretty much most of the time, because most reactions that occur in a cell are ionic 

reactions. So, when the hydrogen ion is involved in the reaction it becomes difficult, 

because for the standard conditions it is concentration should also be set to one molar. 

And, what happens when you set the concentration of hydrogen ions to one molar, the 

pH which is nothing but … the negative log of the hydrogen ion concentration as a first 

approximation, turns out to be zero.  

… The cell is completely gone at a pH of zero, because of the cell typically works at a 

pH of seven or around seven. And, pH of zero is non-physiological since the proteins and 

the enzymes in the cell would certainly be deactivated at that pH.  And therefore, people 

came up with a different standard or a different set of standard conditions of relevance to 

biological systems.  … That is, the pH is taken to be equal to seven or the hydrogen ion 

concentration is taken to be equal to ten power minus seven molar. 

Whereas, the other conditions the other standard conditions, the temperature, twenty five 

degree C, pressure, one atmosphere, and the one molar concentration requirement for all 

the other reactants and products remain the same. I hope you recall this now. Therefore, 

you know, this and the hydrogen ion concentration being ten power minus seven molar is 

the set of standard conditions for biological reactions, which is different from the 

standard conditions for normal reactions. 
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And therefore, we use a different terminology also.  Before that, I should say that under 

such conditions, delta G dash – this is the different terminology that I am talking about –  

delta G dash is defined instead of delta G naught, we use a delta G dash. This is defined 

in which the hydrogen ion concentration is not taken into account in the definition 

explicitly, as long as it is understood that the pH is seven. It is essentially saying that the 

hydrogen ion concentration is taken as ten power minus seven molar.  

And therefore, for our biological reactions, the equation of relevance to use is delta G 

equals delta G dash plus RT ln … the product over all i or C i power mu i. And for the 

current reaction, which is ATP plus water giving you ADP plus P i – this is the reaction 

that we are considering here ATP, ADP and P i, … the concentrations of which we knew 

earlier. 
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Under excess water conditions, when the concentration of water can be taken to be a 

constant, I hope you recall this trick that we use: we can say that delta G equals delta G 

dash plus RT ln concentration of the products … this is hydrolysis of ATP … so, 

concentration of the product, ADP, and concentration of the other product, P i, divided 

by the concentration of ATP. Under the snapshot conditions, that were given delta G 

equals delta G dash which is minus 7.7 kilo calories per mole or minus seventy seven 

hundred calories per mole plus 8.31 times 298, temperature, and all these concentrations 

taken in molar quantities.  That turns out to be … the R has to be in calories, it is not 

8.31 it is 1.983. This will turn out to be minus 11.79 kilo calories per mole.  

I think we are out of time.  I think we need to redo this particular calculation, why do not 

you redo this particular calculation and actually tell me, because I have taken this to be in 

kilo calories I should also take the relevant set of units here; just check and tell me 

whether this value is correct. We will stop here for now.   When we come back in the 

next class, we will work out the other two problems that I mentioned, which also will 

involve whatever we did in this particular module plus a lot of background information 

that you need to brush up. 

 


