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In this class, let us begin by considering maximum work as well as lost work. When we 

are considering a process, we would like to know, what is the maximum amount of work 

that can be expected from that process, for various reasons. It could be for designing the 

process or it could be for … may be evaluating the claims made by others toward the 

maximum work that is possible from a particular process.  In the same vein, we would 

also like to know the amount of work that is lost. In other words, in comparison to the 

maximum work or the ideal work, what is the actual work that you are getting out of the 

system and in the process how much work is being lost compared to the maximum of 

work. 
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To do that, let us start here. We have already seen that the change in entropy of the 

system plus the change in entropy of the surroundings is a positive quantity –  let us call 

that d epsilon –  way back into equation 1.6. We also said that the entropy of the universe 

can only increase – that was one of the statements of the second law. Now let us consider 

these surroundings as a heat sink, as it is called, at a constant temperature T 0. This heat 

sink is a very useful concept; it actually refers to the bodies whose temperatures do not 

change despite the interactions with the systems that they are in contact with. For 

example, there are many things that can be considered as sinks or approximated as sinks; 

some of them are given here. We can consider the earth’s atmosphere as a sink … it 

remains at a constant temperature for a certain period of time. Or, the earth’s surface 

could also be considered as a suitable sink especially for biological systems of relevance. 

Let me also state this; it may not be completely clear right now, but it will become clear 

may be after the fifth module or so. The heat sink is also supposed to be in a condition of 

internal equilibrium with no irreversible changes occurring inside it. This needs to be 

stated as one of the conditions of the heat sink. Let me state it again and leave it at that, 



and let us wait till the fifth chapter or fifth module to make a little better sense of it: The 

heat sink is supposed to be at a condition of internal equilibrium with no irreversible 

changes occurring inside it. 
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Under such conditions, if the system … has a heat interaction of dQ, a differential Q, 

with its surroundings, which is the heat sink in this case. The entropy change or the 

surroundings can be written as – remember the second law that we looked at earlier, dS 

of the surroundings is nothing but minus dQ by T 0; minus because of the convention, 

the direction with which this negative is associated. Remember we are writing this for 

the surroundings; so, minus dQ by T 0. Let us call this equation 2.52. Since we have 

already identified dS surroundings as minus d q by T 0, we will drop the subscripts now 

just for convenience and d S will, as usual, correspond to the system. d S system plus d S 

surroundings, which is being replaced by minus d q by T 0 … is the same d epsilon; d S 

minus d q by T 0 equals d epsilon. Let us call this equation 2.53. 



(Refer Slide Time: 04:44) 

. 

Remember, the d epsilon is the entropy that is created and according to the second law,  

expanding universe and so on, it definitely needs to be positive. Therefore, the d q by T 0 

needs to be either less than or equal to d S.  This directly follows from this equation … 

we are comparing this and this, this needs to be less than or equal to d S for this to be 

positive. We will call this equation 2.54. These are all very generic coming right from 

the second law. And this equals dS for a reversible process that is undergone by the 

system; and is less than dS for an irreversible process. 
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Now, let us look at the first law – some very basics again.  Equation 1.3: we know that 

dQ – this is for a closed system –   dQ equals dU plus dW. If we substitute the first law 

… excuse me … first law of thermodynamics in this equation 2.53, dS plus minus of dQ 

by T 0 equals d epsilon, we are in fact going to substitute for dQ we will get d S plus dQ 

being replaced by dU plus dW by T 0 plus d epsilon.  We have transposed the equation; 

therefore, the negative sign goes away there; or if we multiply throughout by T 0 and 

then transpose the equation, we will get T 0 d S equals d U plus d w plus T 0 d epsilon 

and then grouping the terms appropriately, we can write d W equals T 0 d S minus d U 

minus T 0 d epsilon. We will call this equation 2.55. 
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Now note that d epsilon is positive, T 0 is of course, the temperature that needs to be 

positive in Kelvin. Therefore, the product of those two terms T 0 d epsilon is positive, 

and thus d W needs to be less than T 0 d S. Now from here; this needs to be positive and 

d W needs to be less than or equal to T 0 d S minus d U; d U we do not really know what 

is happening here. We will call that equation 2.56. Now, if we integrate this expression, 

let us say between the states of 1 and 2. It’s a straightforward integration: integral d W is 

W. This remains … this inequality remains less than or equal to T 0 d S between … 

integrated between 1 and 2 gives you S 2 minus S 1 minus d U integrated between 1 and 

2 gives you U 2 minus U 1, we will call that equation 2.57.  

Now, note this equation. This is some quantity, and this is some quantity. And the 

maximum work possible since W is less than this, the right hand side … less than or 

equal to the right hand side, the maximum work that is possible is when W equals the 

right hand side. And therefore, the maximum work possible which happens to be under 

reversible conditions, if indicated by W max can be written as T 0 S 2 minus S 1 minus 

U 2 minus U 1. Therefore, we have a measure of the maximum work that is available 



from a process in terms of it is the state variables of the system T 0 … T 0 is of course, 

the temperature of the surroundings S 2, S 1, U 2, U 1 – all correspond to the state 

variables of the system.  Let us call that equation 2.58. 
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We started out by saying this; let me complete this part by reemphasizing this: the 

maximum work can be used to arrive at limiting conditions.  For example, the maximum 

possible work for a closed system, which can in turn be used for quick estimates, to 

evaluate claims on design as well as to begin with the design itself. The lost work, as we 

said, is a difference between the maximum work and the actual work therefore, the ideal 

or the reversible work minus the actual work; the reversible work, we have an expression 

here T 0 d S minus d U that we got from earlier. The actual work happens to be T 0 d S 

minus d U minus T 0 d epsilon. Therefore, these two terms cancel, these two terms 

cancel we have an expression for the lost work as T 0 times epsilon. This is integrated; 

after integration we get work lost equals T 0 times epsilon in terms of the sink 



temperature the surroundings temperature assumed to be constant times the entropy that 

is created. We will call this equation 2.59.  

At this juncture, … we have looked at many different things so far in this module and 

therefore, it will be good to review whatever we have seen so far especially, 

thermodynamics lots of relationships, lots of seeming confusions. Actually, there is not 

much if you look at it another time, things would be a lot clearer. We will do that, before 

we get on to open systems. 
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So, let us start some sort of a review before we go on to the open systems. We began this 

module to look at additional useful thermodynamic functions.  We said that the internal 

energy U, the entropy S are … along with P, V, T are typically good enough 

thermodynamic functions. And in certain cases, we said that certain functions would turn 

out to be more useful. 
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And we went ahead and defined them the first one was enthalpy which was defined as 

internal energy plus the product of P and V. The next was the Helmholtz free energy 

which we will use to a certain extent in this course but in general it is useful.  Helmholtz 

free energy indicated as A is the difference between internal energy and the product of 

temperature and entropy. And Gibbs free energy, which is G, which is the difference 

between enthalpy given here and the product of temperature and entropy. These were the 

three additional functions that we defined. 
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And then we said that any thermodynamic function needs to be given a reference state, 

the value of the … thermodynamic function either U, S, H, A, G or the others make 

sense only with a reference state being mentioned.  At the reference state we assigned a 

value of 0 to it. And we went through the exercise of thinking about, where the 

temperature is actually assigned a 0 value; if you think about it is just an assignment of a 

0 value at a certain condition, where there is no movement of molecules and so on. And 

we also looked at where the 0 value of pressure is assigned, where we said it as equal to 

0, when there is no even there are no particles with complete absence of particles. And 

the nice thing about thermodynamic manipulations is that one can fix ones own reference 

state for a particular application. But only with at a certain point at a certain reference 

state the value being 0, only if that is done, will any of the thermodynamic functions 

make sense.  
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And then we said that reference state does not really matter, we demonstrated that by 

considering the difference in say U – it could have been difference in anything –  for a 

particular process, we said that if U 2 is some value and U 2 minus U reference is the 

value that make sense at a state 2; and U 1 minus U reference is the value that make 

sense at state 1; U 2 minus U reference minus of U 1 minus U reference; U reference, U 

reference get cancelled out it leading to U 2 minus U 1.  Therefore, whatever is chosen as 

a reference state does not really matter, because we take differences all the time. 
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And then we went and did some exercises. 
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And we also said that the H, A, and G were defined for 1 mole and if there are n moles of 

a pure substance, then we can either call that as n H, the value of enthalpy as n H, which 

will be defined as n U plus P times n V.  P is an intrinsic variable, it does not depend on 

the number of moles that are available. But we said that a better terminology would be to 

consider a superscript T for total values, when there is more than 1 mole that is present. 

Therefore H T equals U T plus P V T. A T equals U T minus T S T these are all 

definitions, and Gibbs free energy total G T was equal to H T minus T S T.  
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And then we went on to consider 1 mole of a pure substance, and we also said at this 

point that whatever we are going to develop in this module, unless otherwise stated, will 

be for a closed system. And that is where we have stopped right now; we have developed 

all the necessary fundamentals for a closed system. And therefore, before we went on to 

open systems we thought we could do a review. 
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We started by considering a single component system, which exists in a single phase.  As 

we all know, phases that are being considered in this course are only three; either a gas 

or a liquid or a solid.  Gas … is also called vapor.  

(Refer Slide Time: 16:31) 



 

And we said that for processes that … involve closed systems, which have negligible 

changes in their potential, kinetic or other forms of energies such as a surface energy, 

electrical energy, magnetic energy, we could write d U equals dQ minus dW.  This is the 

first law. And if we consider the process to be reversible, we could write the second law 

as dQ reversible equals T dS. And … if P V work is the only work interaction that is 

considered at constant pressure, then dW reversible was P dV.  
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Under such conditions we could modify the first law as … dU equals dQ reversible 

minus dW reversible. And therefore we could write d U equals T d S minus P d V. You 

could recall that this became one of the most basic equations for a closed system. And 

we also said that although we considered various things to arrive at this particular point 

that is dU equals T d S minus P d V, we said that since this equation contains only state 

variables, which depend only on the state of the system and not on the path taken to 

reach say state 2 from state 1; this is valid for anything, as long as it is that of a closed 

system.  

And to understand that a little better … before I get into that … nevertheless, the 

equation as a … rather the equation as a whole is applicable for anything; nevertheless, 

the interpretation of the individual terms is applicable only for that particular path. For 

example, in this case; T d S represents heat interaction only for a reversible process and 

P d V represents work interaction only for a reversible process.  That does not change. 

Nevertheless the difference between the two, which is d U – that is applicable in general. 



Whether the path is it reversible/irreversible, whether it has kinks in … it or a smooth 

path –  nothing of that sort matters.  
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And to understand that a little better because this was one of the central concepts that we 

are going to use repeatedly later, we sought to understand that better by considering a 

mountainous region in which our interest was the difference between the heights 

between two points, let us say 1 and 2 or states, if you want to call it state 1 and state 2; 

our interest was h 2 height 2 minus height 1, difference in heights. We said that they 

could be different paths that can be taken; you could take a path on the road, nice road, 

or you take a hilly road, which is not well charted out; you take a helicopter and land 

here.  Whatever path you take the difference in heights between these two remains same 

and does not really depend on the path.  That is a same thing that happens whenever we 

have the final equation in terms of state variables, irrespective of the path that is 

considered.  



Also we said that some paths could make it easier for us to compute the difference in 

values, difference in thermodynamic functions between the two states.  For example, it 

could be considered that in one of these paths say along the road, nice road, an altimeter 

is available.  Therefore, you could actually measure the heights at various points and the 

difference between 2 and 1 would give you the delta h that is required. That would 

always happen therefore, we choose a path, an experimental path if you will, where the 

altimeter or the means of measuring the variable of interest is available to us. And once 

we do the measurement, and we bring it down to an equation, which consists only of 

state variables, then we can use that equation in general. 
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We also said that there could be other equations for a closed system, which would come 

in useful; and we derived them also. d H equals … we will not go through the derivation, 

but tell you just the final expressions. You go back to the slides and look at how we 

derived them. we said that d H equals T d S plus … V d P. 
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And d A was minus S d T minus P d V and d G was minus S … d T plus V d P. (Refer 
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So think we also put it all together somewhere yes … d U equals T d S minus P d V, d H 

equals T d S plus V d P, d A equals minus S d T minus P d V, d G equals minus S d T 

plus V d P. These are nice equations to remember: 2.5 to 2.8, especially if you have close 

book exams as … it typically happens in the university exams if not you know how to 

derive them. And therefore, you can derive them reasonably quickly and you do not have 

to remember these. 
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We also said that if the number of moles is more than 1 (the earlier equations were all for 

1 mole of a closed system, pure component) – if this is the case, then the same equations 

are valid. This is not very obvious and therefore, you were asked to look at your one of 

your reference books by Kenneth Denbigh. You could look at … you could do that, and 

there the proof would be given as to why the same forms are applicable, even for total … 

even for variables, the thermodynamic variables, taken for systems with more than 1 

mole of the pure substance.  

Therefore, d U T equals T d S T – T is a intrinsic variable therefore, it does not have it 

does not need to have any superscript – T d S T minus P d V T. Similarly, P is an 

intrinsic variable; d H T equals T d S T plus V T d P, d A T equals minus S T d T minus 

P d V T, and d G T equals minus S T d T plus V T d P. So, we looked at equations for a 

closed system consisting of a single mole, equations for a closed system consisting of 

more than 1 mole but, of only one pure substance. 
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Then we complicated it a little bit by considering a multicomponent system, but we 

retained the single phase in the nature of the substance. For example, this was some 

terminology and 1 was a number of moles of component 1 and 2 number of moles of 

component 2 and so on. Let me give you the example if it consists … this could be 

multicomponent single phase system – could consist of let us say air – the example could 

be air, which contains water vapor; air by itself has many different components in the 

gaseous phase such as oxygen, nitrogen, carbon dioxide and so on. If you add water 

vapor to it, it also has H 2 O. So, that is a very good example of a multicomponent 

system, but which exists in a single phase.  
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For that, we looked at what equations would be useful to use.  To derive that we started 

out with the generic mathematical representation of a function … of a variable in terms 

of its dependent values. We took U T as a function of S T V T and so on and so forth. 

And, we wrote the total differential, going by one of the theorems in calculus: total 

differential is partial differential … rather d U T total differentialis dou U T dou S T.  S 

T is the first variable that is taken here with all other variables remaining constant V T n 

1, n 2, n 3 the constancy of which is represented as n i here; dou U T dou S T d S T plus 

the second variable dou U T dou V T with all other variables remaining constant times d 

V T; and dou U T dou n 1 with all other variables remaining constant d n 1 plus dou U T 

dou n 2 d n 2 and so on. We have combined all the n terms into this summation sign for 

compact notation … as some of dou U T dou n i at constant V T S T n j, which 

represents the constancy of all n s, except the n that is considered for the differentiation 

here d n i 
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And then we got down to dou U T dou S T at constant V T dou n i equals T and dou U T 

dou V T constant S T n i equals minus P.  
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And we said that … then we went ahead and defined one of the fundamental intrinsic 

properties, which will pretty much form the backbone of this course as you will find out 

in the later modules. We said that dou U T dou n i at constant V T S T and n j equals the 

chemical potential. And therefore, you could write the equation as d U T equals T d S T 

minus P d V T plus sum over mu i d n i’s.  
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And we could derive the other equations also. d G T equals minus S T d T plus V T d P 

plus sum over all i mu i d n i. And since we had used the same term here mu i whether 

we started from G T or U T, we had to prove that they were the same. And before that 

one of the important points to note is that dou G T dou n i at constant T P n j equals mu i 

this definition is predominantly used essentially, because look at the terms that are held 

constant here T P n j these all are easy to manipulate from an experimental point of view. 

And therefore, this is pretty much a preferred definition of mu i although you can define 

it by the other three means also.  
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And this is how we went about proving that the mu i is the same whether you whether 

we started from U T or whether we started from G T. I will not go through the proof you 

could go back to your notes and see how we proved it.  

And this is important; although the chemical potential mu i was introduced in the context 

of a multicomponent systems; it is an intrinsic thermodynamic property. Thus it is an 

equally valid concept for a pure component also. 
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And we extended the derivation to other thermodynamic variables of interest such as A T 

and H T; you could do that. And we have a comprehensive set of equations that are valid 

for a closed system consisting of multiple components, but in one phase. d U T equals T 

d S T minus P d V T plus summation of mu i d n i; d G T equals minus S T d T plus V T 

d P plus summation of mu i d n i; d H T equals T d S T plus V T d P plus summation of 

mu i d n i; d A T equals minus S T d T minus P d V T plus sum of mu i d n i. So 

irrespective of how the mu i is defined, they are all the same. 
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Now, we did a nice exercise, by which we could compare the equations with the standard 

expansions written in terms of partial derivatives. And therefore, we could assign some 

partial derivatives to the thermodynamic functions. Example we said that this is nothing 

but dou U T dou S T at constant V T n i going by a standard expansion for the total 

differential which is nothing but T. And therefore, this T is also dou H T dou S T at 

constant P, n i. And similarly, dou U T dou V T at constant S T n i was P and this P is 

dou A T dou V T at constant T n i; minus S T, here in terms of an expansion dou AT dou 

T at constant V T n I; here, it is dou G T dou T at constant P n I; V T was dou H T dou P 

at constant S T n i; and V T was dou G T dou P at constant T n i.  

And this is quite straightforward, we have already seen this: mu i here was dou U T dou 

n i at constant V T S T n j; here it was a dou H T dou n i at constant S T P n j, here it was 

dou A T dou n i at constant T V T n j has to be a superscript here; and … here it was dou 

G T dou n i at constant T P and all other n j’s. So, this is a nice relationship between 

thermodynamic properties and derivatives, which will come out to be … will turn out to 



be useful in many manipulations. This is just listing it out. I do not think I will go 

through it again you have already seen it. 
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Then we looked at one of the central equations in thermodynamics, in classical 

thermodynamics, call the Gibbs-Duhem equation. We went ahead and derived it by 

starting with the expression for d G and integrating it to arrive at … for the integration, 

we consider a system being made larger and so on so forth. And we arrived at this 

equation 2.23C: minus S T d T plus V T d P minus sum of n i d mu i equal 0. Here note 

that this gives you the variation with temperature, pressure and chemical potential, the 

three major intrinsic quantities of a system. And this is called the Gibbs-Duhem 

equation.  

You also said this as this will have a relevance later, because the temperature gradient 

would form the driving force for energy transport as heat, the pressure differential would 

form one of the driving forces for bulk flow; and chemical potential gradient would form 



would be the driving force for mass flow. And so this has some special relevance, the 

Gibbs-Duhem equation. This relationship between simultaneous variations in the 

intrinsic parameters T P and mu I –  it is worth reemphasizing this. 
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Then, we looked at Maxwell’s relations by applying a very simple theorem … or I 

should say, a basic theorem in mathematics called the reciprocity relationship, which is 

nothing but … if we are considering exact differentials – all thermodynamic variables 

can be written as exact differentials –  and if it is a function of let us say x 1, x 2 and so 

on, till x k then d f can be written as, by a standard means dou f by dou x 1 x j d x 1 plus 

dou f dou x 2 at constant x j d x 2 and so on, till dou f dou x k at constant x j d x k. And 

if we … let say if each one of these are replaced by y’s say this one becomes y 1, this 

one becomes y 2 and so on. 
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Then the reciprocity relationship says that dou y i by dou x n, y could be anything here, x 

could be anything here, and x j with all other x is remaining constant equals dou y n dou 

x i at all other x j’s … all other x j’s remaining constant. If we apply this theorem to our 

expansions of differentials of thermodynamic functions U H A and G  
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Then we get dou T dou V T at constant S T n i equals minus dou P dou S T at constant V 

T n i dou S T dou P at constant T n i equals dou V T dou T at constant P n i.  
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dou T dou P at constant S n i equals dou V T dou S T at constant P n i.  And dou S T dou 

V T at constant T n i equals dou P dou T at constant V T n i. And there were already 

couple of others yes … yeah these two were interesting dou mu i dou T at constant P n i 

equals minus dou S T dou n i at constant T P n j. Similarly, this was by comparison of 

this and this; and by comparing this and this dou mu i dou P T n i equals dou V T dou n i 

at constant T P n j. So, this gives you variation of chemical potential with temperature, 

variation of chemical potential with pressure, which could turn out to be very useful. So 

these were the Maxwell’s relations that we considered and we had written these for a 

generic case, a general case consisting of … for a pure component consisting of … I am 

sorry, for a multicomponent system in a single phase.  
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Whereas, what is found typically in text books initially at least is for a single mole of the 

pure substance. And for that we could write the first four equations directly anything 

relevant to n will drop out therefore, dou T dou V at constant S equals minus dou P dou 

S at constant V, minus dou S dou P at constant T equals dou V dou T at constant P, dou 

T dou P at constant S equals dou V dou S at constant P, and dou S dou V at constant T 

equals dou P dou T at constant V.  
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And then I think we went through some exercises, where we saw the use of these 

equations to solve some useful aspects. Please go through them again. And then we said 

that we brought in this idea of expressing difficult to measure thermodynamic variables 

in terms of easy to measure thermodynamic variables; easy to measure thermodynamic 

variables where temperature, pressure, volume either specific volume or the total 

volume.  
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Along with that we had added the heat capacity at constant pressure, heat capacity at 

constant volume expansivity, compressibility. And we are also said latent heats and heats 

of reaction, although we did not consider these in great detail, in this particular module. 

Since, the values of these are available if we have, if we can express the other 

thermodynamic variables in terms of these variables, it will be that much easier to 

evaluate the not so easy to measure thermodynamic variables.  
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And that is demonstrated here we had defined a heat capacity at constant pressure dou H 

dou T at P and either for a pure substance or for any system in terms of T. Similarly, this 

was specific heat at constant volume dou U dou T at constant V for a pure substance or 

the relevant other for any system. 
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And we saw … worked out an exercise by which we could actually express in terms of 

easy to measure variables, quantities such as these, dou H dou T at constant P, dou S dou 

T at constant P and so on. 
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The other two variables, somewhat easy to measure for which values are available as 

stables and figures, as tables is the end of your text book even; alpha - expansivity 

defined as 1 by V dou V dou T at constant P, kappa - the compressibility defined as 

minus 1 by V dou V dou P at constant T, V in terms of T, V in terms of P are variation of 

volume … in the molar volume in terms of temperature at constant pressure, this is 

variation of molar volume in terms of pressure at constant temperature.  
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And we saw an exercise, which demonstrated the use of these variables; and finding out 

the not so easy to measure quantities in terms of these variables. We had utilized 

mathematics and manipulations quite a bit to do this. 
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And then we introduced two useful mathematical manipulations; one was change of 

variable where you could express … where data could be available in terms of one set of 

variables; you would you would want the same information in terms of another set of 

variables. Therefore, you could use a mathematical technique called change of variable 

to do that.  
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We had given an example in terms of internal energy as a function of temperature and 

volume, which is typically known, and you wanted the terms of temperature and 

pressure, then you can do this manipulation and estimate the values.  
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Then we considered cyclic transformation, which is a very useful, as we saw. Let us go 

to the final expression we … derived it, which is a strength of this particular course – we 

derive everything. This was one cyclic transformation, and we had … let me write this 

down, and then point this out. We had this dou U dou T at constant V, dou V dou U at 

constant T, dou T dou V at constant U equals minus 1. We said that this follows a cyclic 

pattern, whatever isat  the top goes to the bottom, whatever is at the bottom goes out, and 

whatever is whatever is outside goes to the top. And this can be written for many 

different thermodynamic variables, the cyclic transformation, equals minus 1. And we 

also applied that to some sort of a real life situation. 
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Then for ease of use, I had gone ahead and shown you changes in enthalpy and entropy 

for 1 mole of a closed system in terms of changes in temperature and pressure; this is 

more of convenience not really very fundamental but useful nevertheless. 
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d H was dou H dou T d T plus dou H dou P at constant T d P, and S was also written in 

terms of temperature and pressure. Then we got these in terms of easy to measure 

thermodynamic variables.  
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d H equals C P d T plus V into 1 minus alpha times T, d P; and d S we got in terms of C 

P by T D T minus alpha V times d P; we work out a problem. 
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And today, we saw what maximum work was, and what lost work is. We started out 

from the very fundamentals first law and second law second law and first law –  in that 

order. And we derived the expression for maximum work, and we had introduced the 

concept of something called a heat sink, which is useful concept which refers to bodies, 

whose temperatures do not change, despite the other interactions with the system. And 

we said that earth’s atmosphere or the earth’s surface is a suitable surrounding for … 

suitable surroundings for a biological system. Rather, which can be considered as a heat 

sink. And we also said that heat sink … there is internal equilibrium, and so on. 
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And we arrived at an expression for maximum work which was W max equals T 0, the 

sink or the surroundings temperature times S 2 minus S 1 minus U 2 minus U 1.  
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And we said the maximum work can be used to arrive at limiting conditions, the 

maximum possible work for a closed system for example, or can also be used for quick 

estimates or to evaluate claims on designs or to start design itself. And then we arrived at 

an expression for lost work as equal to T 0 times the entropy created epsilon. That was a 

review of whatever we have done in this module. … So far we have considered closed 

systems, and in the next class we will look at open systems. 

 

 


