Biostatistics and Design of Experiments Prof. Mukesh Doble Department of Biotechnology Indian Institute of Technology, Madras

> Lecture - 23 x² distribution/test

Welcome to the course on Biostatistics and Design of Experiments. We will continue on this x^2 distribution as well as x^2 test. As I said, it is very important test. It is almost like a binary- yes, no, success, failure type of thing. It is a continuous distribution, it is a skewed distribution and it is very useful if I am comparing observed versus expected, I expect something but I observe something. Is there a statistical difference in this observation, so in such situations I use this x^2 test. So, it is distribution once again to recall.

(Refer Slide Time: 00:47)

It is a continuous distribution but it is asymmetric as a degrees of freedom increases. I can see the curve becomes more uniformed but, originally it is right skewed. So, we can construct confidence interval, we can compare actual frequencies with expected frequencies; we can compare fitted data versus the real model, sorry, with the real data. We can look at association between variables. Like for example, I said, is bad workmanship related to the work shift, that sort of situations we can look at. Is the poor

results we get because of certain instruments? And that sort of comparative studies can be done using $\frac{x^2}{x}$ test.

(Refer Slide Time: 01:35)

So the area under the curve is 1 and so when you are talking about say $\frac{\chi^2}{2}$ of 5 then this area will be the cumulative probability that is between 0 and 5 of the occurrence.

(Refer Slide Time: 01:49)

بالمعالي مالم					والباذعرا	(printers	÷		
distribution	Ten-clad One-sided	:	10	1	2	:	5	1	N.
 For upper-tail one-sided tests, the 					1	+			+
test statistic is compared with a value	1.11		14.64	-		-		in set	
from the column of unnecknowed adar	040	6.75	- 44	1.4	3.00	7.6	18	26	331
from the column of upper boundaries	1	14	-12	11	10	10	10	21	11.14
critical values.	9.	1.81	4.34	10	0.0	1.0	10.0	6.97	11.00
and the second second second second	111	120	2.00	18	12.86	1.8	2.0	10	14.41
 For two-sided tests, the test statistic 	- ÷ .	1.00	11.86	-15	0.14	15	10	145	31.00
is compared with values from both		12	11.00	14	11	13	22	32	11
the table for the upper-boundaries	18	18	158	10	110	141	15	10	80
and there are appended to an area	- ii	14	19.81	1.00	114	140	165	411.	1144
critical values and the table for the	10	12	28	17	21.00	244	3.0	4.00	28.14
lower-boundaries critical values.	1.1	22	1	12	22	122	1		122
	. #		20	10	110	1.756	85		31.40
 If the test statistic is > than the 	12	1.4	122	- 20	10.07	12	10.00	141	34,19
unnerstall critical volue or c the	. 94	15.44	24	1940	71.41	4.96	94.0	8,94	11.11
upper can critical value or < the	100	(5.38		11.00	MAT		1.4	9.90	34.65
lower-tail critical value, we reject the	1	14.85	2.4	11.00	3437	1.40	10	10.00	41.64
null hypothesis.	1	10.47	11.00	10.84	11.00	11.40	22	11.10	41.96
the state of the s		17.00	1.16	11.00		1144	6.6	11.84	-
	12	10.00	1.4	22	211	22	12	110	41.14
	2	14.77	20	111	41.10	14.05	11	14.36	6.5
	1	1	-	12.1				1	
	1.	iter:	81.77	2.10	1.16	11.90	1.0	35	16.11
	1	10.10	140	111	200	25	2.5	14	25.16
	18	14.78	8.5	4.9	111.88	15.10	196.42	11.94	10.0
	1.00	11.00	14.8	11.00	104.14	14,10	10.0	111	104.13

Now, there is a table just like your t table, F table, z table and so on. We have x^2 table also, in this column we have the degrees of freedom, here we have for the two sided and

here the one sided. This gives you the lower boundary on the left hand side of the critical value because this curve is like this, right? so you will a lower boundary and upper boundary. Generally we look on that side, upper side. So this is a two sided, this is a one sided. So obviously, two sided 0.05 is one sided 0.025, two sided 0.1 is one sided 0.05. If the test statistics is greater than the upper critical value, then we reject the null hypothesis or if it is lower than this lower critical value also, then we reject the null hypothesis.

(Refer Slide Time: 02:47)

We can first do a test for seeing whether the sample comes from a population, the sample variance is coming from the population variance. So if I have a sample set x1, x2 up to n I calculate a variance x^2 , then I can compare it with the population variance of σ^2 . The null hypothesis they are both same, the sample is same from the population or alternate will be they are not in the same population. So the test statistic is like this

$$\chi^{2} = \frac{(n-1)s^{2}}{\sigma_{0}^{2}}$$
, n is the data points, s^{2} is the variance of the sample, σ_{0}^{2} is the variance of the population.

(Refer Slide Time: 03:27)

Then, we can use this for testing goodness of fit. So, I observe something but I expect something,

$$\frac{(O_i - E_i)^2}{E_i}$$

, add up. So here the null hypothesis

H1: $Oi \neq Ei$, alternate will be . Again we compare it, the test statistics with the table and then if the test statistics is greater than the table critical value, we will say the null hypothesis can be rejected.

(Refer Slide Time: 03:59)

						Mailhi	N		
Three different grades of product is exp	ected from ty	NO			1		11		
machines			Gead	. ō	V.	E.	0,	E_l	Total
			A	- 2	1	4	3	6	10
 Ho: The two categorical variables an 	e independer	nt,	C.	- 1	έ.	:	12	12	20 20
 H1: The two categorical variables and 	e related.		Total	2	0	20	30	30	50
test statistics, $x^2 = \sum \frac{(O_i - E_i)^2}{E_i}$	Columns a da Column I-da	nche the lar nata the ng	ne bood pe bood	Serio in the Serio in the Li	Sch-sal Sylte-sa	d attad s hd attad pilana s	ban seben		
test statistics, $x^2 = \sum \frac{(\partial_i - E_i)^2}{E_i}$	Columns a da Column F da	ene fac in Anti fie og	ng basi per hand	leto in de leto e de L	Sch-cal right-sa right-sa	d attad si kd attad pilana i	dan. udan		
test statistics, $x^2 = \sum \frac{(O_i - E_i)^2}{E_i}$ $\chi 2 = 0.625$	Columns of Go Goleson I-do Two-odad Ote-salad	ene the lar note the up 4.2 6.1	ng bead ge baad ge baad	larin or the Ratio or the La RAT RAT	Sch-sch right-sc right-sc	d offical so hel offical policano e 4.2 4.2	ben. when t	10	
test statistics, $x^2 = \sum \frac{(Q_i - E_i)^2}{E_i}$ $\chi 2 = 0.625$ From table, $p=0.05$	Column a do Column 3 do Column 3 do Decoded Decoded	ecte the life note the up 4.2 6.1 4	er besk pr besk p p	Series or the Series or the Balance A	School right-so rel of a b	dottal s bdottal s pillano s 0.2 0.5 0.5	dan. viden. 1 1 2 3	10 10 1	× 11 ×

So it can be used for dependence, inter dependence like I said you know whether poor workmanship is related to the type of shift. If is poor results related to the instruments we use that sort of situation. Let us look at a problem, 3 different grades of product is expected from 2 machines, there are 2 machines, 3 different grades of product. What is **Ho**? The null hypothesis they are independent, alternatives these two's are related with each other. We observe on machine 1, Grade A 3, Grade B 9, Grade C 8, sorry we observed 3, 9, 8 but expected is 4, 8, 8. Same thing on machine 2 we observed 7, 11, 12 but expected is 6, 12, 12.

Now, I want to look at the hypothesis the null hypothesis, the variables are independent, that means grades are independent of the machine which we use but alternate will be they are related with each other. So what is the test statistics?

$$\frac{(O_i - E_i)^2}{E_i}$$

, observed minus expected square divided by expected, observed minus expected square divided by

expected, right?.

So you get a x^2 of 0.625. Now if you look, go to your table 0.05 how many degrees of freedom? You have 2 machines so 1, we have 3 grades 3 that gives you 2, so totally 2 * 1 is **1 sorry**, 2. So we look in the under the column of 2 and then we say 5.99 for a 95 %. So, we expect the table is 5.99, test is 0.625 so null hypothesis cannot be rejected. So the grades are independent of the machine, very nice problem. Let us look at another situation.

(Refer Slide Time: 06:14)

We have say incidence of 3 types of Malaria and 3 tropical regions you know Asia, Africa, South America. Malaria is a very serious problem, there are different types of malaria-malaria A, malaria B, malaria C.

So, the malaria A is happening 31, 14, 45, malaria B is 2, 5, 53, malaria C is 53, 45, 2, right?. So, I want to know whether it follows the expected, this is what is observed. The expected, we expect all the malaria either to be same, that means the **Ho** will be the 2 categorical variable that is type of malaria versus the type of continents should be independent, there should not be any relationship on that actually. The other one is the alternate will be these two variables are related to each other. So if there are 90 cases, we expect that all of them should be there in all the countries because, we do not expect any sort of correlation or relationship in this entire situation.

So this is the observed, expected is equally probable in all the 3 continents Malaria A, Malaria B, Malaria C should be equally probable that will be what is called expected. So observed is this, so

$$\frac{(O_i - E_i)^2}{E_i}$$

so we should be able to get the test statistics. In this particular problem, we get 125.5, so this problem we get it as 125.5 And degrees of freedom we have 3 continents, so 2 is the degree, 3 types of malaria, 2 is degrees of freedom, for type, so 2 * 2 is 4. So we go to 4 degrees of freedom and 95 %. So let us look at the table, 4 degrees of freedom and 95 % so we get 9.49, so 9.488. So when you do that, we will get test statistics is 125.5, the table is 9.488, so we can reject the null hypothesis. What is the null hypothesis? There is no relationship between the type of malaria and the continent location, so we can reject. So there seems to be some sort of a correlation, on type of malaria and the type of and the location or place from which it is observed. This is how we need to do, this type of problem of where we have the observed verses expected. Now as I said Excel also can do, there are two types of functions in Excel.

(Refer Slide Time: 09:28)

I mentioned one is the CHITEST, where in CHITEST we give the actual value then we give the expected value. So let us look at these previous problem of grade where we say

we expect, observed is 3, 9, 8, 7, 11, 12 whereas expected is 4, 8, 8, 6, 12, 12. So how do you do this problem, CHITEST. So the actual expected, actual and the expected. So we get a probability of 0.98 so obviously, null hypothesis cannot be rejected. Do you understand? So that is what we got from our calculation also or we can say CHIINV 0.05, the degrees of freedom here is 3 gives you 2, 2 machines gives you 1, that gives 2 so it is 5.991. So we need to look at this 5.99 here actually, right?. So the CHI INVERSE gives you exactly like your table, it gives you the $\frac{x^2}{x^2}$ value and that is the critical value.

Whereas, the CHITEST gives you the probability for your problem and gives you the probability, given the observed and the expected, we can do, now let us look at this problem also using excel and see whether we can do it using excel. So this is the observed, **sorry**, observed is 31, 2, 53, 14, 5, 45, 45, 53, 2 whereas when I say expected. How do I calculate the expected? It is bit tricky to do that actually, we look at that is this type of problem later on actually, we need to calculate expected is $86 \div 250 * 90$. So it will be like $86 \div 250 * 90$. There is we expect 30.96 because, 86 is the summation of this, 250 is your grand total, the summation of this is 90. So you take that same ratio you will get it as $86 \div 250 * 90$. So for this, what is that ratio? $86 \div 250 * 60$, $86 \div 250 * 60$. What about this one? This will be $86 \div 250$, $86 \div 250 * 100$, that is 34.4 that means, I expect 34.4, I expect 20.64, I expect 30.96. Do you understand how to get this each one of them? So if I want to get this I say, $86 \div 250$ that is the grand total multiplied by 90. So it is just the question of ratio.

 $86 \div 250 * 90$, then next one will be $86 \div 250 * 60$, then $86 \div 250 * 100$, then next one will be $64 \div 250 * 90$, then $64 \div 250 * 60$, then $64 \div 250 * 100$, so obviously, there is a

mistake I have made here so I put minus here so that is the mistake. So I got 250 in both the cases that is very good. So I can use chi test, CHITEST comma so you get a very small probability which means that, we can reject the null hypothesis, which means that null hypothesis there is no relationship between the location or continent and the type of malaria. Same thing I got here right, I rejected.

Now, so by using a CHITEST, I am able to reject the null hypothesis. Now same thing we can do by CHI INVERSE also, I will say 0.05 the degrees of freedom as you know I said is 4 because 3 continents and 3 types of disease so 4 so it comes out to be 9.48 right?, so 9.48. So from the CHITEST command, we can reject the null hypothesis. We can also do it using your Graphpad because of, as you can see we have the commands for Graphpad here also, we have the $\begin{bmatrix} x^2 \\ here, right? \\ chi square \\ mich can do this type of calculations. So we can do chi square exactly, so chi square from a probability this is equivalent to a chi inverse whereas this equivalent to a CHITEST command. So you can see this CHI TEST command.$

So it is exactly like the CHITEST command where it gives you the p value or in this particular case, it will give you, the given the probability it will give the chi value it is exactly like chi inverse. So even in your Graphpad we can do that so the CHITEST and the CHIINV command available in excel, even in Graphpad we have use these two we use this to do that actually. So let us go back to our problem and so we will say we will reject the null hypothesis that, there is an association between these two categories or parameters.

(Refer Slide Time: 19:11)

So one important point you need to consider is generally, if you are involving only two categories for example, if I am doing a 2 by 2 contingency table especially for two then there is something called Yate's correction because x^2 distribution is continuous whereas when we use two categories-yes, no or success, failure or drug working, not working obviously, we are not able to as such do good justice, because in a two category system it is like a discontinuous data or integer data whereas x^2 is a continuous data. So in such situations we need to subtract something called the Yate's correction. So this is called a Yate's correction, where you just do the Ei -Oi observed, that is you calculate Ei-Oi then subtract minus 0.5 from there.

After that you square it up and then divide by, that after that it is also same expected, no problem. So if you look at the normal, we used to have $Oi - Ei^2$ or $Ei - Oi^2$, it divided by expected. So what you do is, you just subtract minus 0.5 this is valid only when you have something like a 2 by 2 type of contingency table and then in such situations we just, instead of this term you subtract from, minus 0.5 from there and then after that you square it up and divide expected in the denominator, so that is all. That is only difference which you need to consider when you are going to give Yate's correction this is valid when we are talking about 2 by 2 type of contingency table, where we are talking in terms of integers especially drug working, not working, yes, no, not and yes that sort of situations we need to use it.

So we will look at some problems where we use Yate's correction, but one important point is when the data is negative that is when you calculate expected minus observed negative we cannot further subtract from minus 0.5 into that.

$ \begin{array}{c c} E & (0.4^{*1}7^{*})6.8 & 10.2 \\ O & 3 & 14 \\ (E-O) & 3.8 & 3.8 \\ (E-O)_{12} & 3.3 & 3.3 \\ (E-O)_{12}^{2} & 10.89 & 10.89 \end{array} $		Die	Alive (Don't de)								
$\begin{array}{cccccc} 0 & 3 & 14 \\ (E-O) & 3.8 & 3.8 \\ (E-O)_{1c} & 3.3 & 3.3 \\ (E-O)_{1c}^{2} & 10.89 & 10.89 \end{array}$ $(E-O)_{1c}^{2} /E = 10.89/6.8 + 10.89/10.2 = 2.67$ From table for DF=1, p=0.05, one tail $\chi 2 = 3.84$ Cannot reject null hypothesis Cannot conclude the drup is effective $\begin{array}{c} \hline U & U & U & U \\ U & U & U & U \\ \hline U$	E	(0.4*17=)6.8	10.2									
$\begin{array}{cccccc} (E-O) & 3.8 & 3.8 \\ (E-O)_{1c} & 3.3 & 3.3 \\ (E-O)_{1c}^{2} & 10.89 & 10.89 \end{array}$ $(E-O)_{1c}^{2} / E = 10.89/6.8 + 10.89/10.2 = 2.67$ From table for DF=1, p=0.05, one tail $\chi 2 = 3.84$ Cannot reject null hypothesis Cannot conclude the drup is effective $\begin{array}{c} \hline U & U & U & U \\ \hline U & U & U & U \\ \hline U & U & U & U \\ \hline U & U & U & U \\ \hline U & U & U & U \\ \hline U & U & U & U \\ \hline U & U & U & U \\ \hline U & U & U & U \\ \hline U & U & U & U \\ \hline U & U & U & U \\ \hline U & U & U & U \\ \hline U & U & U & U \\ \hline U & U & U & U \\ \hline U & U & U & U \\ \hline U & U & U & U \\ \hline U & U & U & U \\ \hline U & U & U & U \\ \hline U & U & U & U \\ \hline U$	0	3	14									
$\begin{array}{cccccc} (E-O)_{12} & 3.3 & 3.3 \\ (E-O)_{12}^{-2} & 10.89 & 10.89 \\ \hline \\ (E-O)_{12}^{-2} /E = 10.89/6.8 + 10.89/10.2 = 2.67 \\ \hline \\ From table for DF=1, p=0.05, one tail \\ \chi 2 = 3.84 \\ \hline \\ \hline \\ Cannot reject null hypothesis \\ \hline \\ Cannot reject null hypothesis \\ \hline \\ Cannot conclude the drup is effective \\ \hline \\ $	(E-O)	3.8	3.8									
$\begin{array}{cccccc} (E-O)_{1}^{2} & 10.89 & 10.89 \\ \hline & (E-O)_{1}^{2} / E = 10.89 / 6.8 + 10.89 / 10.2 = 2.67 \\ \hline & From table for DF=1, p=0.05, one tail \\ \chi 2 = 3.84 \\ \hline & \hline$	(E-O),	3.3	3.3									
$\begin{array}{c} (E\text{-}O)_{x}{}^{2} / E = 10.89 \\ \text{M} 6.8 + 10.89 \\ \text{for DF=1, } p=0.05, \text{ one tail} \\ \chi 2 = 3.84 \\ \hline \\ $	(E-O);2	10.89	10.89	6								
Cannot reject null hypothesis Cannot conclude the drug is effective r r r r r r r r r r r r r	(E-O) ₆ ²	/E =10.89/6.8 +1	10.89/10.2 = 2.67	Colorema de		e he	ano er he	id-a	Latio	in i		
Cannot conclude the drug is effective	$(E-O)_c^2$ From table $\chi^2 = 3.84$	/E =10.89/6.8 +1 for DF=1, p=0.0	10.89/10.2 = 2.67 5, one tail	Columns & de Columns #-de	erie fie in erie fie op	ngi bagi per bagi	darico or the darico or the La	id-a right a right a	teriot kteriot	len den		
	$(E-O)_c^2$ From table $\chi 2 = 3.84$ Cannot re	/E =10.89/6.8 +1 for DF=1, p=0.0	10.89/10.2 = 2.67 5, one tail sis	Columns i de Columns i de Tex-soliad Oue-soliad	ent for the set of the type of	er hen	dariss or the daries or the LL LL LL LL LL	id-so rightsi refsf i	totioi s letonie phones ki ki	in i		1
	$(E-O)_c^2$ From table $\chi^2 = 3.84$ Cannot re Cannot co	/E =10.89/6.8 +1 for DF=1, p=0.00 ject null hypothe	10.89/10.2 = 2.67 5, one tail sis is effective	Columns - de Columns - de Thereaded One-saled of P	100 100 100 100 100 100 100 100 100 100	er hos pr hos s	darina or the darina or the Li Li Li Li Li Li Li Li Li Li Li Li Li	st-o apro edula)	phono phono j		4 10 10	1
2 425 447 636 596 888 738 882 427 1 839 825 831 738 842 433 461 113	(E-O) _{c²} From table χ2 = 3.84 Cannot re Cannot co	/E =10.89/6.8 +1 for DF=1, p=0.0 ject null hypothe anclude the drug	10.89/10.2 = 2.67 5, one tail sis is effective	Columns of the Column	100 for 100 fo	erhoa arhoa	darino or the darino or the EU EU EU EU EU EU EU EU EU EU EU EU EU	Step apres estate 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	phono phono 10 10 10 10 10 10 10 10 10 10 10 10 10	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 10 10 10 10 10 10	1 HE 1 HAVE 1 HA

(Refer Slide Time: 21:29)

That is very, very important. When we are talking in terms of Yate's correction that means, when E-O is already negative we cannot again do more negative and take it out below 0, that is not permitted actually. Let us look at problem, which is 2 by 2 sort of situation because we are talking about a drug working on a set of patients so because of the drug, patients either die or alive, we expect some data whereas we observe something else so we need to look at whether there is an association. So in such situation we are also applying the Yate's correction as well, in this particular problem.

Look at this particular problem. In a disease with 40 % known mortality, a drug is given to 17 patients and only 3 die. So 40 % are known to die that means, 17 patients we expect 6.8 to die, the remaining 10.2 not to die. But we observe 3 to be dying and 14 to be alive, right? 3 + 14 is 17, 6.8. So is the drug effective?, we need to find out. What we do? E-Q that is E-Q, 6.8 minus 3 is 3.8 (E-Q).

Then we do a correction here, and then that is we subtract it by 0.5 that comes to 3.3. Then, once you calculate the difference between the expected and the observed, you use the absolute value and then subtract minus 0.5 from there, that is the Yate's correction. And that is why you get the corrected E minus O, that is expected minus observed to be

the same on both sides, because we are taking the absolute value and then subtracting minus 0.5. After that you square them and then you divide each one of them with the expected, you add up to get expected minus observed corrected square by expected. Now this is what you get 2.67. Now this is at 1 degree of freedom because we have die, alive, 2 states so we have 1 degree of freedom. So if you look under 1 degree of freedom for a p = 0.05 for a 1 sided test, we get the table chi square as 3.84. Now your statistics is 2.67 and table is 3.84 so you cannot reject the null hypothesis. So we cannot conclude the drug is effective. So you understand this Yate's correction here, so remember that you do the Yate's correction that is you subtract minus 0.5 from the absolute value of expected minus observed.

Thank you very much.

Key Words: Confidence interval, frequencies, variables, cumulative probability, degree of freedom, critical value, upper boundary, lower boundary, the expected, the observed, 2x2 type of contingency table, absolute value, Yate's correction.