
Bioinformatics Dr. M. Michael Gromiha Department of Biotechnology Indian Institute of Technology, Madras

Lecture – 49 Demonstration on ProTherm: Thermodynamic database for proteins and mutants

Demonstration on ProTherm is Thermodynamic Database for proteins and mutants.

(Refer Slide Time: 00:28)

As we discussed earlier ProTherm contents information on sequence instruction information, experimental conditions thermodynamic data and so, literature information for different proteins, as well as their mutants. The major aspect of ProTherm is thermodynamic data and supplemented with all the other information, we can access ProTherm in this website, abren dot net ProTherm and, explain the utilities and how to retrieve data from ProTherm.

(Refer Slide Time: 00:57)

Oh this is website for ProTherm. So, here you can see the links with the other databases like pronate or biomolecules gallery, and left side, you can see the major aspects of ProTherm, you can see the overview. So, what the major contents of this a database and, what we can obtain from this database and, here we update the, what is new and the statistics page and we give few tutorials.

(Refer Slide Time: 01:25)

So, here you can see details how to obtain data, or how to retrieve data from ProTherm database and, here you can give the more details about the ProTherm all right.

(Refer Slide Time: 01:36)

So, now, here is a cross references.

(Refer Slide Time: 01:39)

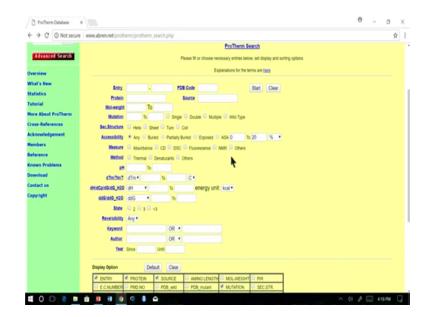
 X Ø www.abren.ne 	et/protherm/protherm_crossreference.php 🕸
	ProTherm
8/	Thermodynamic Database for Proteins and Mutants
Home ProTherm	
Go	Data updated: Feb. 22.2013. Cross-References from PDB.PIR and SWISS-PROT to ProTherm
Advanced Search	The following tables show the correspondence between the statutase entries of PDB, PRI and SWISS-PROT and PorTherm entries. In the case of PDB, Table 2 contains links for PDB entries in which processing of sequence identify with corresponding ProTherm protein sequence is higher than 50%. These tables can be used to create potters from these statutase entries is Phi/Therm.
verview hat's New	1 PDB to ProTeem 100%; Table without ink Operational zig Rejuptated June 13 2011) 2 PDB to ProTeem 100% and Julyer Download zig Rejuptated June 13 2011, 6 MB compressed file without Ink) 3 PDR to ProTeem Comparison zig Relegioration via 13 2011.
atistics	4. SWISS-PROT to ProTherm Download zip file(updated June 13 2011)
atorial	Direct linking from PD8 to ProTherm entries:
ore About ProTherm	You can link from structural information to corresponding Pro Therm entries by using URL
oss-References knowledgement	http://www.abren.net/protherm/protherm_pdburt.php?ENTRYs**** where *** corresponds to 4-letter PDB ID. You can also specify multiple PDB IDs separated by comma. Once this information is sent to ProTherm, the program automatically finds
embers	homologues of the structure (IIO% Identity and higher), and display the list of corresponding ProTherm entries with some essential information.
oference	Home ProTherm ProlUT
nown Problems	
ownload	Biomolecules Gallery
ontact us	
opyright	

You can see the PDB map to the ProTherm and Swiss proto ProTherm and so, on.

(Refer Slide Time: 01:48)

And here we give the references this is the major references and the citations, currently if you look at the different versions of these a papers and website, because more than a 1000 right.

(Refer Slide Time: 02:06)


So, now if you go to the main page right so, so this is the simple search you can give any keywords to search ProTherm for example, if you are interested lysozyme, where this is the protein widely studied, so, can if you click go.

(Refer Slide Time: 02:20)

· · · C O www.	bren.net/protherm/protherm_quick.php		Ŕ
ntry Protein	dG ddG I/Im pH Measure	Method REFERENCE	
05 Lysozyme	NULL NULL NULL 3.00 DSC	Thermal BIOCHEMISTRY 31, 8323-8328 (1992) PMID: 1525170	
06 Lysozyme	0.00 -4.60 57.00 3.00 DSC	Thermal BIOCHEMISTRY 31, 8323-8328 (1992) PMID: 1525170	
1 Lysozyme	NULL NULL 35.00 5.50 CD	GdnHC1 PROTEIN ENG 6, 183-187 (1993) PMID: 8475043	
22 Lysozyme	NULL NULL 35.00 5.50 CD	GdnHC1 PROTEIN ENG 6, 183-187 (1993) PMID: 8475043	
23 Lysozyme	NULL NULL 35:00 5:50 CD	GdnHC1 PROTEIN ENG 6, 183-187 (1993) PMID: 8475043	
21 Lysozyme	NULL NULL NULL 2.00 CD	Thermal BIOPOLYMERS 32, 1431-1441 (1992) PMID: 1457724	
22 Lysozyme	NULL NULL NULL 6.50 CD	Thermal BIOPOLYMERS 32, 1431-1441 (1992) PMID: 1457724	
23 Lysozyme	NULL NULL 2.00 CD	Thermal BIOPOLYMERS 32, 1431-1441 (1992) PMID: 1457724	
24 Lysozyme	NULL NULL 2.00 CD	Thermal BIOPOLYMERS 32, 1431-1441 (1992) PMID: 1457724	
95 Lysozyme	NULL NULL 2.00 CD	Thermal BIOPOLYMERS 32, 1431-1441 (1992) PMID: 1457724	
26 Lysozyme	NULL NULL NULL 2.00 CD	Thermal BIOPOLYMERS 32, 1431-1441 (1992) PMID: 1457724	
27 Lysozyme	NULL NULL 2.00 CD	Thermal BIOPOLYMERS 32, 1431-1441 (1992) PMID: 1457724	
28 Lysozyme	NULL NULL NULL 6.50 CD	Thermal BIOPOLYMERS 32, 1431-1441 (1992) PMID: 1457724	
29 Lysozyme	NULL NULL NULL 6.50 CD	Thermal BIOPOLYMERS 32, 1431-1441 (1992) PMID: 1457724	
00 Lysozyme	NULL NULL NULL 6.50 CD	Thermal BIOPOLYMERS 32, 1431-1441 (1992) PMID: 1457724	
1 Lysozyme	NULL NULL NULL 6.50 CD	Thermal BIOPOLYMERS 32, 1431-1441 (1992) PMID: 1457724	
12 Lysozyme	NULL NULL NULL 6.50 CD	Thermal BIOPOLYMERS 32, 1431-1441 (1992) PMID: 1457724	
19 Lysozyme	NULL NULL 25:00 3:00 CD	GdnHCI BIOCHEMISTRY,M, 9882-9891 (1991) PMID: 1911779	
10 Lysozyme	NULL NULL 25:00 3:00 CD	GdnHC1 BIOCHEMISTRY 30, 9882-9891 (1991) PMID: 1911779	
1 Lysozyme	NULL NULL 25:00 3:00 CD	GdnHCI BIOCHEMISTRY 30, 9882-9891 (1991) PMID: 1911779	
22 Lysozyme	NULL NULL 25:00 3:00 CD	GdnHC1 BIOCHEMISTRY 30, 9882-9891 (1991) PMID: 1911779	
13 Lysozyme	NULL NULL 25:00 3:00 CD	GdnHCI BIOCHEMISTRY 30, 9882-9891 (1991) PMID: 1911779	
Lysozyme	NULL NULL 25:00 3:00 CD	GdnHCI BIOCHEMISTRY 30, 9882-9891 (1991) PMID: 1911779	
19 Lysozyme	NULL NULL 2.00 CD	Thermal BIOCHEMISTRY 30, 9816-9828 (1991) PMID: 1911773	
10 Lysozyme	NULL NULL NULL 5.70 CD	Thermal BIOCHEMISTRY 30, 9816-9828 (1991) PMID: 1911773	
1 Lysozyme	NULL NULL 2.00 CD	Thermal BIOCHEMISTRY 30, 9816-9828 (1991) PMID: 1911773	
12 Lysozyme	NULL NULL 2.00 CD	Thermal BIOCHEMISTRY 30, 9816-9828 (1991) PMID: 1911773	
13 Lysozyme -	NULL NULL NULL 2.00 CD	Thermal BIOCHEMISTRY 30, 9816-9828 (1991) PMID: 1911773	

So, not only you can give all the data regard the lysozyme. So, these are the entry number here, these are protein name and these thermodynamic parameters right, this is the conditions and, which measurement they use to get the data and, the method whether it is thermal or the denaturant and, it can be the complete reference right.

So, now if you are specifically interested on any type of data, then you could advances.

(Refer Slide Time: 02:47)

Right here you have a lot of options available to search, you can search with their entry this is the ProTherm entry. So, this is only specific to a ProTherm that, if you have any

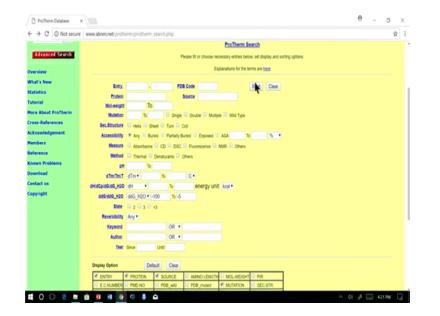
queries on any data, then you can contact the developers using the entry number; it is easy to check the data.

So, you can also search with the PDB code right, then you can use the protein name and the source and, if you know the size of the protein for example, if you have the data on the similar size of proteins for example, a 100 amino acid residues, you can give the molecular weight and, you can give the mutation for example, if you want to see the mutation in from lysine to alanine ok.

So, I can lysine and alanine, what will happened to mutate this one and, here you can choose where a single mutation, or double mutation, or the multiple mutation and if it is single mutation and if you start right.

(Refer Slide Time: 03:35)

(-	C O www.abres	n.net/protherm/proth	erm_result.php											\$
	Mutati	n Condition on: to on No.:Single,												NEX
atry	Protein	Source	Mutation	dG_H2O	dG	т	Tm	dHcal	m	Cm	pH	Measure	Mesthod	REFERENCE
12	Barnase	Bacillus amyloliquef	L 14 A	4.29	NULL	. 25.00	NULL	NULL	1.87	2.20	6.30	Fluorescence	Urea	J MOL BIOL 224, 783-804 (1992) PMID: 1569557
09	Staphylococcal nuclease	Staphylococcus aureu	L 25 A	NULL	NULL	. NULI	L 39.90	90.00	NULL	NULL	7.00	DSC	Thermal	PROTEIN SCI 2, 567-576 (1993) PMID: 8518730
15	Staphylococcal nuclease	Staphylococcus aureu	L 25 A	NULL	NULL	NULI	L 31.20	63.00	NULL	NULL	5.00	DSC	Thermal	PROTEIN SCI 2, 567-576 (1993) PMID: 8518730
63	Myoglobin	Sperm whale	L 29 A	NULL	NULL	NULI	L 67.60	NULL	NULL	NULL	11.00	DSC	Thermal	BIOCHEMISTRY 32, 12638- 12643 (1993) PMID: 8251481
67	Myoglobin	Sperm whale	L 69 A	NULL	NULL	NULI	L 72.70	NULL	NULL	NULL	11.00	DSC	Thermal	BIOCHEMISTRY 32, 12638- 12643 (1993) PMID: 8251481
19	Staphylococcal nuclease	Staphylococcus aureu	L 7 A	3.88	NULL	. 20.00	NULL	NULL	0.89	0.60	7.00	Fluorescence	GdaHCl	BIOCHEMISTRY 29, 8033-804 (1990) PMID: 2261461
21	Staphylococcal nuclease	Staphylococcus aureu	L 14 A	3.18	NULL	. 20.00	NULL	NULL	1.05	0.40	7.00	Fluorescence	GdnHCl	BIOCHEMISTRY 29, 8033-804 (1990) PMID: 2261461
23	Staphylococcal nuclease	Staphylococcus aureu	L 25 A	2.78	NULL	. 20.00	NULL	NULL	1.12	0.30	7.00	Fluorescence	GdaHCI	BIOCHEMISTRY 29, 8033-804 (1990) PMID: 2261461
25	Staphylococcal nuclease	Staphylococcus aureu	L 36 A	1.98	NULL	. 20.00	NULL	NULL	1.13	0.20	7.00	Fluorescence	GdnHCl	BIOCHEMISTRY 29, 8033-804 (1990) PMID: 2261461
27	Staphylococcal nuclease	Staphylococcus aureu	L 37 A	3.78	NULL	. 20.00	NULL	NULL	0.89	0.60	7.00	Fluorescence	GdnHCI	BIOCHEMISTRY 29, 8033-804 (1990) PMID: 2261461
29	Staphylococcal nuclease	Staphylococcus aureu	L 38 A	3.78	NULL	. 20.00	NULL	NULL	0.94	0.60	7.00	Fluorescence	GdaHCl	BIOCHEMISTRY 29, 8033-804 (1990) PMID: 2261461
31	Staphylococcal nuclease	Staphylococcus aureu	L 89 A	2.88	NULL	. 20.00	NULL	NULL	1.00	0.40	7.00	Fluorescence	GdnHCl	BIOCHEMISTRY 29, 8033-804 (1990) PMID: 2261461
11	Staphylococcal	Staphylococcus	L 103 A	0.88	NULT	20.00	NUL	NULT	0.96	0.10	7.00	Ehorescence	GdaHC1	BIOCHEMISTRY 29, 8033-804


We will get all the lysine to alanine mutations right. So, here we will get the experimental data, I will explain the details how to get this a all this data, then you can search with any secondary structure with the mutation pulse and helix, or sheet or turn or coil and also locations based on the accessibility, you can use either buried, or partially we are exposed these are predefined.

If I specifically interested on any specific range of accessibility surface area you can use here for example, 0 to 20 a angstrom square r 0 to 30 percentage, they give the values both in percentage right and angstrom square right, what say which is a units you gets using DSSP, you get I see an X X square, how do we the percentage values. You would do it with the X units, or accessibility and give the percentage and, you can choose any of these options either the directly from the DSSP result, or you can use the percentage you can normalize with the X and X accessibility.

Then we get the measures whether you say CD or DSC or fluorescence these are the major measurements and, the methods whether this is a thermal or the denaturant right for example, if you use the data for the thermal right, we will get a thermal denaturation and the denaturant right. If denaturant thermal means you will get the data for the delta Tm right and, this is the data of the denaturant so, this why it is completely null.

So, if you want to get the denaturants then we will click on denaturant, you will get the data with the denaturants denaturation, these are conditions so, pH and for the denaturants we need to give the temperature right, you can decide temperature.

And also you can search for the different ranges of these experimental data for example, if you are interested in the very extreme stability for example, extremely stabilize, or extremely destabilize right. In this case you can give the delta delta G values as more than minus 10 kilo cal per mole and, you can see the any mutations which are extremely stable or unstable see delta delta G H 2 O right.

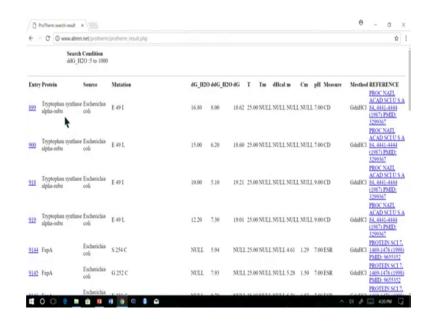
(Refer Slide Time: 05:49)

For example you can say you can use it minus 5 all right, then if you see this.

(Refer Slide Time: 05:58)

Europ Protein Matational C, EUO & G T Im Hildram Can pH Measures Meetabol REFERENCE 1565 Ubiquitin Saccharomyves cerviti 1.44 0.12 NULL 65:00 NULL 53:39 NULL 15:00 DUS Thermal JMOL 100, 122, 124:135:2000;17MID:122:151:9 1565 Ubiquitin Saccharomyves cerviti 4.44 NULL 65:00 NULL 53:11 NULL 10:00 DSC Thermal JMOL 100, 122, 124:135:2000;17MID:122:151:9 1566 Ubiquitin Saccharomyves cerviti: 4.44 NULL 65:00 NULL 54:61 NULL 10:00 DSC Thermal JMOL 100, 122; 124:135:2000;17MID:122:151:9 1566 Ubiquitin Saccharomyves cerviti: 1.44 -0.75 NULL 65:00 NULL 54:67 NULL 10:00 DSC Thermal JMOL 100, 122; 124:15:2000;17MID:122:151:9 1566 Ubiquitin Saccharomyves cerviti: 1.49 NULL 65:00 NULL 54:67 NULL 10:00 DSC Thermal JMOL 100, 122; 124:12:15:2000;17MID:122:151:9 1567 NULL 65:00 NULL 54:67 NULL NUL 10:00 DSC Thermal JBOL (EUK 143; 24:01-427; 12000;17MID:122:151:9 1578 DA Staphylococcus nurre 15:9 6 NULL 25:00 NULL NULL 03: NULL 70:00 CD Thermal		www.abren.net/protherm/prothe Search Condition Method:Thermal, ddG_H2O :-5 to 1000											
5552 Übiquita Saccharomyces cervi E 34 V 0.02 NULL 65:00 NULL 53.11 NULL NULL 30:0 DSC Thermal LMGL BIOL 322, 122-135 (2002) PMID: 12215419 5662 Ubiquita Saccharomyces cervi E 34 V 0.02 NULL 65:00 NULL 53.11 NULL 30:0 DSC Thermal LMGL BIOL 322, 122-135 (2002) PMID: 12215419 5662 Ubiquita Saccharomyces cervi E 34 0.07 NULL 65:00 NULL 53.11 NULL 30:0 DSC Thermal LMGL BIOL 322, 122-135 (2002) PMID: 12215419 5662 Ubiquita Saccharomyces cervi E 34 0.07 NULL 65:00 NULL 51:67 NULL NUL 30:0 DSC Thermal LMGL BIOL 322, 122-135 (2002) PMID: 12215419 5663 Ubiquita Saccharomyces cervi E 34 -105 NULL 65:00 NULL 47:6 NUL NULL 30:0 DSC Thermal LMOL BIOL 322, 122-135 (2002) PMID: 12215419 5663 Ubiquita Saccharomyces cervi E 34 -105 NUL 65:00 NULL 40:76 NUL NULL 30:0 DSC Thermal LBOL (BIOL 322, 122-135 (2002) PMID: 12215419 5663 Ubiquita Saccharomyces cervi E 34 -105 NUL 12:500 NUL 10:01 NUL 10:34 Thermal LBOL (HEM 323, 426-427) (2003) PMID: 18077463 5723 DbA Staphylococcus ameru E 59 Q 6.31 NUL 12:500 NUL NU	Entry Protein	Source Mutatio	n dG_H2C) dG	T Tu	a dH	cal m	Cm	pH 3	Measure !	Mesthod	REFERENCE	
1563 Display Dermal IMOL BIOL 322, 121-155 2003 [PMID: 1225419 1563 Ubiquita Saccharomyces cervi E 34 -0.77 NULL 65:03 NULL 50:45 NULL 30:0D SC Thermal IMOL BIOL 322, 121-155 2003 [PMID: 1225419 1563 Ubiquita Saccharomyces cervi E 34 -0.77 NULL 65:03 NULL 50:45 NULL 30:0D SC Thermal IMOL BIOL 322, 121-155 2003 [PMID: 1225419 1563 Ubiquita Saccharomyces cervi E 344 -1.65 NULL 65:03 NULL 50:76 NULL 30:0D SC Thermal IMOL BIOL 322, 121-155 2003 [PMID: 1225419 1563 Ubiquita Saccharomyces cervi E 344 -1.72 NULL 65:03 NULL 30:0D SC Thermal IMOL BIOL 322, 121-155 2003 [PMID: 1225419 1553 DiAs Staphylococccus areen T 153 V 8.19 NULL 25:03 NULL 10:10 43 NUL 700 CD Thermal IMOL BIOL 322, 121-155 2003 [PMID: 11077463 2120 DiAs Staphylococcus areen F 90 6.13 NULL 25:03 NULL NUL 0.27 NUL 17:00 CD Thermal IBOL CHEM 283, 4261-4271 (2008) PMID: 11077463 2120 DiAs Staphylococcus areen F 90 6.34 NULL 25:03 NUL NUL 0.27 NUL 17:00 CD Thermal IBOL CHEM 283, 4261-4271 (2008) PMID: 11077463 21210	5681 Ubiquitin	Saccharomyces cerevi E 34 F	-0.12	NULL	65.00 NL	JLL 52.3	9 NUL	L NUL	1.3.001	DSC 1	Thermal	J MOL BIOL 322, 123-135 (2002) PMID: 12215419	
15654 Übiquitin Saccharomyces cervi E 34 A -0.77 NULL 65.00 NULL 90.48 NULL NULL 300 DSC Thermal IMOL BIOL 322, 121-135 (2003) PMID: 12215419 5660 Ubiquitin Saccharomyces cervi E 34 D -105 NULL 65 00 NULL 51.07 NULL NULL 300 DSC Thermal IMOL BIOL 322, 121-135 (2003) PMID: 12215419 5660 Ubiquitin Saccharomyces cervi E 34 D -105 NULL 65 00 NULL 51.07 NULL NULL 300 DSC Thermal IMOL BIOL 322, 121-135 (2003) PMID: 12215419 52735 Daba Staphylococcus anreer 1153 V 8.19 NULL 25:00 NULL NULL 0.33 NUL 7:00 CD Thermal IBIOL CHEM 283, 4261-4271 (2008) PMID: 18077463 52749 Daba Staphylococcus anreer 1153 V 8.43 NULL 25:00 NULL NULL 0.28 NULL 7:00 CD Thermal IBIOL CHEM 283, 4261-4271 (2008) PMID: 18077463 52749 Daba Staphylococcus anreer 1153 V 8.43 NULL 25:00 NULL NULL 0.28 NULT 7:00 CD Thermal IBIOL CHEM 283, 4261-4271 (2008) PMID: 18077463 52749 Daba Staphylococcus anreer E 96 6.46 NULL 25:00 NULL NUL 0.27 NULT 7:00 CD Thermal IBIOL CHEM 283, 4261-4271 (2008) PMID: 18077463 52721 Daba	5682 Ubiquitin	Saccharomyces cerevi E 34 V	0.02	NULL	65.00 NU	JLL 53.J	II NUL	L NUL	L 3.00 I	DSC 1	Thermal	J MOL BIOL 322, 123-135 (2002) PMID: 12215419	
15652 Übiquita Saccharomyces cervi E 44 1.05 NULL 65:03/VUL 51:67 VULL NULL 13:00 DSC Thermal 1MOL BIOL 322, 121-135 (2003) PMID: 1225419 56632 Übiquita Saccharomyces cervi E 34 -1.72 NULL 65:03 NULL 40:76 NULL 30:00 DSC Thermal 1MOL BIOL 322, 121-135 (2003) PMID: 1225419 7252 DAS Staphylococcus aneu T 153 V NULL 25:03 NULL 40:76 NULL 70:00 Thermal 1BIOL CHEM 283, 4261-4271 (2008) PMID: 18077463 72739 DAS Staphylococcus aneu T 153 V NULL 25:03 NULL 0:33 NULL 70:00 Thermal 1BIOL CHEM 283, 4261-4271 (2008) PMID: 18077463 72749 DAS Staphylococcus aneu T 153 V NUL 12:00 NULL 0:31 NUL 7:00 Thermal 1BIOL CHEM 283, 4261-4271 (2008) PMID: 18077463 72749 DAS Staphylococcus aneu T 169 Q 6.34 NULL 25:00 NULL NULL 0:27 NUL 7:00 Thermal 1BIOL CHEM 283, 4261-4271 (2008) PMID: 18077463 72741 DAS Staphylococcus aneu T 169 Q 5.46 NULL 25:00 NULL NULL 0:27 NUL 7:00 Thermal 1BIOL CHEM 283, 4261-4271 (2008) PMID: 18077463 Thermal 1BIOL CHEM 283,	5683 Ubiquitin	Saccharomyces cerevi E 34 Y	-0.43	NULL	65.00 NL	JLL 53.1	II NUL	L NUL	L 3.00 I	DSC 1	Thermal	J MOL BIOL 322, 123-135 (2002) PMID: 12215419	
15658 Übignitin Sacchatomyces cervi E 34 N -1.72 NULL 65.00 NULL 49.76 NULL 30.0 DSC Thermal IMOL BIOL 322, 121-135 (2001) PMID: 12215419 24758 DsA Staphylococcus nuren T 153 V 8.19 NULL 25.00 NULL NULL 0.34 NULL 700 CD Thermal IBIOL CHEM 283, 4561-4271 (2008) PMID: 1807463 24739 DsA Staphylococcus nuren T 153 V 8.19 NULL 25.00 NULL NULL 0.34 NULL 700 CD Thermal IBIOL CHEM 283, 4561-4271 (2008) PMID: 18077463 24730 DsA Staphylococcus nuren T 153 V 8.40 NULL 25.00 NULL NULL 0.24 NULT 700 CD Thermal IBIOL CHEM 283, 4561-4271 (2008) PMID: 18077463 24730 DsA Staphylococcus nuren E 69 Q 5.46 NULL 25.00 NULL NULL 0.27 NULT 700 CD Thermal IBIOL CHEM 283, 4561-4271 (2008) PMID: 18077463 24731 DsA Staphylococcus nuren E 69 Q 5.46 NULL 25.00 NULL NULL 0.27 NULT 700 CD Thermal IBIOL CHEM 283, 4561-4271 (2008) PMID: 18077463 24731 DsA Staphylococcus nuren E 69 Q 5.46 NULL 25.00 NULL NULL 0.27 NULT 700 CD Thermal IBIOL CHEM 283, 4561-4271 (2008) PMID: 18077463	5684 Ubiquitin	Saccharomyces cerevi E 34 A	-0.77	NULL	65.00 NU	JLL 50.4	48 NUL	L NUL	L 3.001	DSC 1	Thermal	J MOL BIOL 322, 123-135 (2002) PMID: 12215419	
Variation Staphylococcus nureu F153 V 8.19 NULL 25:00 NULL NULL 0.31 NULL 7:00 CD Thermal <u>TB(OL CHEM 283, 4261-4221 (2008) PMID: 18077463</u> Variation Staphylococcus nureu F153 V 8.19 NULL 25:00 NULL NULL 0.33 NULL 7:00 CD Thermal <u>TB(OL CHEM 283, 4261-4221 (2008) PMID: 18077463</u> Variation Staphylococcus nureu F153 V 8.13 NULL 25:00 NULL NULL 0.26 NULL 7:00 CD Thermal <u>TB(OL CHEM 283, 4261-4221 (2008) PMID: 18077463</u> Variation Staphylococcus nureu F 66 Q 6.13 NULL 25:00 NULL NULL 0.27 NULL 7:00 CD Thermal <u>TB(OL CHEM 283, 4261-4221 (2008) PMID: 18077463</u> Variation Staphylococcus nureu F 66 Q -5.46 NULL 25:00 NULL NULL 0.27 NULL 7:00 CD Thermal <u>TB(OL CHEM 283, 4261-4221 (2008) PMID: 18077463</u>	5687 Ubiquitin	Saccharomyces cerevi E 34 D	-1.05	NULL	65.00 NU	JLL 51.6	57 NUL	L NUL	L 3.00 I	DSC 1	Thermal	J MOL BIOL 322, 123-135 (2002) PMID: 12215419	
V2129 DbhA Staphylococcus aureu T 1/51 V 8.43 NULL 25:00 NULL NULL 0.23 NULL 7:00 CD Thermal <u>IBIOL CHEM 283, 4261-4271 (2008) PMID: 18077463</u> V2129 DbhA Staphylococcus aureu E 96 Q 6.13 NULL 25:00 NULL NULL 0.25 NULL 7:00 CD Thermal <u>IBIOL CHEM 283, 4261-4271 (2008) PMID: 18077463</u> V2121 DbhA Staphylococcus aureu E 96 Q -5.46 NULL 25:00 NULL NULL 0.27 NULL 7:00 CD Thermal <u>IBIOL CHEM 283, 4261-4271 (2008) PMID: 18077463</u>	5688 Ubiquitin	Saccharomyces cerevi E 34 N	-1.72	NULL	65.00 NU	TLL 49.7	76 NUL	L NUL	L 3.00 I	DSC 1	Thermal	J MOL BIOL 322, 123-135 (2002) PMID: 12215419	
V4740 DobA Staphylococcus nureu E 96 Q 6.13 NULL 25.00 NULL NULL 0.28 NULL 700 CD Thermal <u>TBOL CHEM 283, 4261-4271 (2008) PMID: 18077463</u> V4740 DobA Staphylococcus nureu E 96 Q -5.46 NULL 25.00 NULL NULL 0.27 NULL 7.00 CD Thermal <u>TBOL CHEM 283, 4261-4271 (2008) PMID: 18077463</u> V4741 DobA Staphylococcus nureu E 96 Q -5.46 NULL 25.00 NULL NULL 0.27 NULL 7.00 CD Thermal <u>TBOL CHEM 283, 4261-4271 (2008) PMID: 18077463</u>	4738 DsbA	Staphylococcus aureu T 153 V	8.19	NULL	25.00 NU	JLL NU	LL 0.34	NUL	L 7.00 0	CD 1	Thermal	J BIOL CHEM 283, 4261-4271 (2008) PMID: 18077463	
24741 DebA Stephylococcus nurve E 96 Q - 5.46 NULL 25.00 NULL NULL 0.27 NULL 7.00 CD Thermal TBIOL CHEM 283, 4261-4221 (2008) PMID: 18077463	4739 DsbA	Staphylococcus aureu T 153 V	8.43	NULL	25.00 NU	JLL NU	LL 0.33	NUL	L 7.00 0	CD 1	Thermal	J BIOL CHEM 283, 4261-4271 (2008) PMID: 18077463	
	4740 DsbA	Staphylococcus aureu E 96 Q	6.13	NULL	25.00 NU	JLL NU	LL 0.28	NUL	L 7.00 0	CD 1	Thermal	J BIOL CHEM 283, 4261-4271 (2008) PMID: 18077463	
Display 1-10 Go to search menu	4741 DsbA	Staphylococcus aureu E 96 Q	-5.46	NULL	25.00 NL	JLL NU	LL 0.27	NUL	L 7.00 0	CD 1	Thermal	J BIOL CHEM 283, 4261-4271 (2008) PMID: 18077463	
						Displ	ay 1-	10 🤇	Go to se	earch me	<u>uu</u>	*	

There are some cases ok; this is minus 5 to any number. So, this what do you get the ok, I will show the delta delta G H 2 O right.


(Refer Slide Time: 06:10)

wn Problems	pH	To					
nload	dTm/Tm/T	dTm •	To	C.			
act us	dH/dCp/dQ/dQ_H20	dH 🔻	To	energy unit	kcal •		
right	dd0/dd0_H2Q	ddG_H2O *	-100 To 100				
	State	02030	>3				
	Reversibility	Any *					
	Keyword		OR .				
	Author		OR .				
	Year	Since	Until				
	Display Option	Dr	fault Clear				
	ENTRY	PROTEIN	SOURCE	AMINO LENGTH	MOLWEIGHT		
	E.C.NUMBER	PMD NO	PD8_wild	PD8 mutant	MUTATION SEC.STR.		
	🖉 ASA	STATE	Ø d6_H2O	Ø ddG_H2O	🖬 dG 🔲 ddG		
	N T	🛛 Tm	🛛 dTm	C ONH	🖬 dHcal 🔤 m		
	Cm .	🛛 аСр	🖉 pH	BUFFER_NAME	ION_NAME ADDITIVES		
	MEASURE	METHOD	Reversibility	ACTIVITY	ACTIVITY_Km ACTIVITY_Kca		
	ACTIVITY Kd	KEY_WORD	S REFERENCE	AUTHOR	REMARKS		

And this is the my the reason is why we choose this what is that because, we could less temperature data, because we put the thermal denaturant. So, right because if you do not get the data with these delta delta G H 2 O only some mutations are matching is a reason.

If you take this out and, if you get the delta delta G is more than 5 because in the ProTherm, we give the positive sign for stabilizing and negative for the destabilizing. So,

this is more than 5 so, you can see now if the data will be interesting. So, you can see this delta G H 2 O, you can see these are the mutation not many mutations, but still or 32 mutations which are have extremely stable right.

(Refer Slide Time: 07:12)

So, in this particular tryptophan synthase and alba subunit that E 49 I, if you mutated this increases stability of 8 kilo cal per mole. Now, you see this very high right you can see why this happens not for all the mutants, we can see several specific mutations, which are highly stabilizing.

But if we take the highly destabilizing mutants for example, if it is a up to minus 5 right, this is minus 1 100 this is for example, just because we need the complete destabilize once right. If you click on that, then you can see several mutations which are having highly destabilizing.

(Refer Slide Time: 07:58)

Now, you can take these several mutations and see why these mutations are extremely stable or extremely unstable. So, you can do the analysis and you can see, or you can have any a common features, which you can explain the highly stabled, or highly unstabled mutants and so, on right.

You can use this in absence to check the extremely stabled, as well as extremely a destable mutants these are states as I discussed earlier 2 state means because, the unfolded state and the folded state and if you under mutant states, then you can see 3 or 4 that you can choose these a any states to get your data.

Then you can get reversibility right we can (Refer Time: 08:37) unfolded state and, then you can return back to unfolded state that you say, this is reversibility yes, if not this reversibility is no right like this key words right. So, you can said to the any of the key words as well as the others right and the ears right. So, you can do that.

So, now, we have so many options to search your data right. Now, if you display everything there is a big mess, we do not know what you are searching for and which information do you want. So, in this case we have a display option right. So, you can choose any of these options do you want right, I will explain some of the some of the some examples. Then we can sorting you can have a sorting options. So, you can sort your data based on the results, the number of entries the default value is 300, but you can use the more number of 3000 30000's these entries. So, you can download all the data all together ok.

Now, I go with these few examples. So, let us see I want to have the stability values for all the single mutants right. So, what to do we got a single mutation right very simple right.

(Refer Slide Time: 09:52)

(-	C O www.abren.r	et/protherm/prothern	n_result.php	2									\$
	Search C Mutation	Condition No.:Single,											NEXT
ntr	y Protein	Source	Mutation	dG_H20) dG	т	Tm	dHcal m	Cm	pH	Measure	Mesthod REFE	RENCE
	Phospholipase A2	Bovine	H 48 N	6.50	NULI	. 30.00	NULL	NULL 1.20	5.40	8.00	CD	GdnHCI J AM	CHEM SOC 115, 8523-8526 (1993) PMID
	Phospholipase A2	Bovine	H 48 Q	8.90	NULI	. 30.00	NULL	NULL 1.34	6.60	8.00	CD	GdnHC1 J AM	CHEM SOC 115, 8523-8526 (1993) PMID
	Phospholipase A2	Bovine	H 48 A	6.40	NULI	. 30.00	NULL	NULL 1.02	6.30	8.00	CD		CHEM SOC 115, 8523-8526 (1993) PMID
	Ribonuclease HI	Escherichia coli	K 91 R	NULL	NULI	NULL	49,80	NULL NUL	L NULI	3.00	CD	Thermal JBIO 13310	L CHEM 267, 22014-22017 (1992) PMID: 44
	Ribonuclease HI	Escherichia coli	K 91 R	NULL	NULI	NULL	52.00	NULL NUL	LNULI	. 5.50	CD	Thermal JBIO 13310	L CHEM 267, 22014-22017 (1992) PMID: 44
	Ribonuclease HI	Escherichia coli	D 94 E	NULL	NULI	NULL	49.80	NULL NUL	L NULI	3.00	CD	Thermal JBIO	L CHEM 267, 22014-22017 (1992) PMID: 44
0	Ribonuclease HI	Escherichia coli	D 94 E	NULL	NULI	NULL	52.00	NULL NUL	L NULI	5.50	CD	Thermal JBIO	L CHEM 267, 22014-22017 (1992) PMID: 44
1	Ribonuclease HI	Escherichia coli	K 95 G	NULL	NULI	NULL	49.80	NULL NUL	L NULI	3.00	CD	Thermal JBIO 13310	L CHEM 267, 22014-22017 (1992) PMID: 44
2	Ribonuclease HI	Escherichia coli	K 95 G	NULL	NULI	NULL	52.00	NULL NUL	L NULI	. 5.50	CD	Thermal JBIO 13310	L CHEM 267, 22014-22017 (1992) PMID: 44
3	Ribonuclease HI	Escherichia coli	K 95 A	NULL	NULI	NULL	49.80	NULL NUL	NULI	3,00	CD	Thermal JBIO	L CHEM 267, 22014-22017 (1992) PMID; 44
4	Ribonuclease HI	Escherichia coli	K 95 A	NULL	NULI	NULL	52.00	NULL NUL	L NULI	5.50	CD	Thermal JBIO	L CHEM 267, 22014-22017 (1992) PMID: 44
5	Ribonuclease HI	Escherichia coli	K 95 N	NULL	NULI	NULL	49.80	NULL NUL	L NULI	3.00	CD	Thermal JBIO	L CHEM 267, 22014-22017 (1992) PMID: 44
6	Ribonuclease HI	Escherichia coli	K 95 N	NULL	NULI	NULL	52.00	NULL NUL	L NULI	5.50	CD	Thermal JBIO 13310	L CHEM 267, 22014-22017 (1992) PMID: 44
8	Interleukin 1 beta	Human	T 9 A	7.00	8.30	25.00	NULL	NULL NUL	L 1.10	6.50	Fluorescenco	GdaHCI JBIO 83943	L CHEM 268, 18053-18061 (1993) PMID: 58
2.0	The distantion	11	TOP	(00)	0.00	10.00	MILL	ADD ADD	in	1.00	Dee	CLUTCH LBIO	L CHEM 268, 18053-18061 (1993) PMID;

And if you click start now, it is a big mess you need all these things right So, now, the question is among all the information, which share the you are interested in for example, you have a understand disability data because, that is the important aspect of this ProTherm database. So, you want pro thermodynamic data ok.

So, now the display option you just clear it clear of everything right. So, if you click on the delta delta G H 2 O all right, this is the change in the free energy obtained denaturant. So, if you do so you have to make sure that you should not click the thermal here, if you click the thermal and if you do that delta delta G H 2 O, you do not get any data right your denaturant that is fine, if you do the thermal, then you have to look for the delta Tm, or the delta delta G not with the H 2 O right the make sure ok.

If you do like this right, if you start like this what will happen you get this data.

(Refer Slide Time: 10:47)

(-	C Owww.abren.net/protherm/protherm_result.php		Ý
	Search Condition Mutation No.:Single,		NEXT
Entr	ry ddG_H2O		
2	-3.00		
£.	-0.60		
	-3.10		
2	NULL	•	
	NULL		
	NULL		
0	NULL		
1	NULL		
2	NULL		
3	NULL		
4	NULL		
5	NULL		
6	NULL		
8	-2.10		
2	-3.10		
0	-2.80		
1	-3.70		
1234	-3.10		
3	-2.10		
4	1.50		
6	NULL		
6 7 8	NULL		
8	NULL		
2	NULL		

Now, the problem is you get the data, but you do not know this data corresponds to what right. So, this is not sufficient so, what are the important information necessary for the analysis, what information necessary.

Student: (Refer Time: 11:03).

You know protein m right, or if you are interested in the structures, then we need the PDB while, then it will tell you whether the mutant three structure, or not right, then you can make the energy structure is known, you can know structure information, structure information not known you can do sequence information.

Then whatever that information do you need.

Student: (Refer Time: 11:22).

Yeah this is very important right otherwise we do not know the mutation (Refer Time: 11:27) very important that will tell you, work which residue is mutated to which residue in which protein this is fine and anything else do you want.

Student: (Refer Time: 11:37).

Delta G if you talk about the a denaturant right, if you interested in denaturants denaturation delta G we do not get any data. So, you get the, a delta G H 2 O right.

So, delta G H 2 be had, then we can also think about your conditions right, because their data varies from different conditions. So, you can use the T temperature we get denaturant right ok, I can also click at the if you interested in denaturant right, then you can see the pH is these right ok. Let us see what is what is happening here.

(Refer Slide Time: 12:15)

(-	C () www.abren.net/	protherm/prothe	rm_result.ph	ρ							\$
	Search Con Mutation Ne Method:Den	Single,									NEX
etr	y Protein	PDB wi	ld Mutatio	Sec.St	r ASA(2	adg H2	O ddG H2	OT m	Cm	pH	
	Phospholipase A2	1BP2		Н	9.40	6.50	-3.00		5.40	8.00	
	Phospholipase A2	1BP2	H 48 Q	Н	9.40	8.90	-0.60	30.00 1.34	6.60	8.00	
	Phospholipase A2	IBP2	H 48 A	Н	9.40	6.40	-3.10		6.30	8.00	
8	Interleukin 1 beta	HOB	T9A	s	3.89	7.00	-2.10	25.00 NULL	1.10	6.50	
2	Interleukin 1 beta	HOB	T9L	8	3.89	6.00	-3.10	25.00 NULL	1.20	6.50	
0	Interleukin 1 beta	HOB	T9Q	s	3.89	6.30	-2.80	25.00 NULL	1.00	6.50	
1	Interleukin 1 beta	HOB	T9G	s	3.89	5.40	-3.70	25.00 NULL	0.90	6.50	
2	Interleukin 1 beta	HOB	K 97 R	Н	44.48	6.00	-3.10	25.00 NULL	1.20	6.50	
3	Interleukin I beta	HOB	K 97 G	н	44.48	7.00	-2.10	25.00 NULL	1.10	6.50	
4	Interleukin I beta	HOB	K 97 V	н	44.48	10.60	1.50	25.00 NULL	1.40	6.50	
6	Gene V	IVQB	E 30 F	s	16.94	NULL	NULL	25.00 3.60	3.18	7.00	
2	Gene V	IVOB	E 30 M	s	16.94	NULL	NULL	25.00 3.70	2.78	7.00	
8	Gene V	IVOB	C 33 S	\$	0.00	NULL	NULL	25.00 4.00	1.40	7.00	
2	Gene V	IVOB	D 36 C	s	34.42	NULL	NULL	25.00 3.50	2.00	7.00	
0	Gene V	IVQB	D 36 N	s	34.42	NULL	NULL	25.00 4.20	2.20	7.00	
1	Gene V	IVOB	I 47 T	5	2.43	NULL	NULL	25.00 4.90	0.90	7.00	*
2	Gene V	IVQB	D 50 H	Т	28.52	NULL	NULL	25.00 3.80	2.10	7.00	
3	Gene V	IVQB	F 68 L	s	31.39	NULL	NULL	25.00 3.40	1.40	7.00	
4	Gene V	IVOB	K 69 H	s	42.15	NULL.	NULL	25.00 3.70	2.20	7.00	
5	Gene V	IVQB	K 69 M	s	42.15	NULL	NULL	25.00 3.10	2.70	7.00	
6	Gene V	IVQB	V 70 C	Т	68.05	NULL	NULL	25.00 4.40	1.70	7.00	
7	Gene V	1VQB	V 70 P	Т	68.05	NULL	NULL	25.00 4.40	1.30	7.00	
	for www.abreninet	1.005.00		~	34.05	8.01	-0.81	25.001.88	4.20	6.30	

So, I got the data like you know this is a compatible because, it is not exiting the page limit and all right. So, you can see this the protein m this is a pretty video all most from all the mutants, they have the wild type IID, if you want to have the mutant ID they are click on mutant, then we know that success of the wild type and mutant.

Then you come to the compare two analysis right ok, this is secondary structure right. Now, these proteins if you want to you have any analysis based on secondary structures, you can extract right we discussed about AWK, just you can save it and you receive a single AWK come and, you can get the secondary information right.

Then in this case also if you see there are many null null data ok, either remove missing AWK comment. Otherwise in the database also you can eliminate these how to eliminate these right, we going to the search option go to delta energy H 2 O, we should get some numbers. So, you can give two extreme values server actually can give minus 100 to plus 100 ok.

So, m and c at the moment really we (Refer Time: 13:29) that. So, in this case if you see this you see delta delta G H 2 O you get the numbers right, you can eliminate all the null values. So, if you want to remove the null values you can give some range, then this case you got (Refer Time: 13:45) element because, it will show on only you figure the numbers right.

So, now you get the some of the data right now, if you the if you see this right some cases the same mutants appears several times, that will be difficult to search with this one. So, in this case you can use the sorting option ok. So, if you see this one the sorting option.

If you do with this wild type residue and the mutant residue and, the residue number ok, then you can also use the values because, delta G H 2 you are now using on so, delta G H 2, then you will see same mutation maybe same protein or different protein and different locations, how we will change right, you can see that either taken to the ascending order either taken to the descending order right, you may be descending order this is better because, we get the stabilizing ones the first right.

← → C @ www.abren.net/pro	therm/prothe	rm_result.php						\$
Search Conditi Mutation No.:S Method:Denatu ddG_H2O:100 Sorting by wild	ingle, irants, 0 to 100	res_no,ddg_h2o,						NEX
Entry Protein	PDB wi	ld Mutation	Sec.Str	ASA(%) dG H2	O ddG H	2OT pH	
5352 Phosphoglycerate kinase	3PGK	Y 122 W	С	37.67	4.81	-0.57	25.00 7.50	
5357 Phosphoglycerate kinase	3PGK	Y 122 W	С	37.67	3.45	-0.91	25.00 7.50	
5365 Phosphoglycerate kinase	3PGK	Y 122 W	C	37.67	5.79	1.29	25.00 7.50	
374 Phosphoglycerate kinase	3PGK	Y 122 W	C	37.67	2.72	-5.65	25.00 7.50	
5351 Phosphoglycerate kinase	3PGK	Y 48 W	Н	37.58	5.31	-0.07	25.00 7.50	
356 Phosphoglycerate kinase	3PGK	Y 48 W	Н	37.58	3.80	-0.56	25.00 7.50	
3364 Phosphoglycerate kinase	3PGK	Y 48 W	Н	37.58	4.31	-1.77	25.00 7.50	
5373 Phosphoglycerate kinase	3PGK	Y 48 W	Н	37.58	3.54	-4.83	25.00 7.50	
2082 CspA	IMJC	Y 42 W	NULL	NULL	3.20	0.20	25.00 7.00	
2086 CspA	IMJC	Y 42 W	NULL	NULL	3.20	0.10	25.00 7.00	
2658 Staphylococcal nuclease	ISTN	Y 27 W	8	10.29	4.40	-0.60	20.00 7.00	
2657 Staphylococcal nuclease	ISTN	Y 27 V	S	10.29	2.00	-3.00	20.00 7.00	
3739 UIA protein	10IA	Y 86 T	S	6.46	5.20	-2.90	22.00 7.00	
656 Staphylococcal nuclease	1STN	Y 27 T	8	10.29	1.70	-3.30	20.00 7.00	
4593 Insulin	1ZNJ	Y 26 T	S	2.01	3.46	-0.30	25.00 8.00	
8733 UIA protein	10IA	Y 13 T	S	19.00	6.80	-1.30	22.00 7.00	
12237 Ketosteroid isomerase	10H0	Y 55 S (PDB: Y 57 S; PIR: Y 57 S)	Н	5.71	14.80	9.50	25.00 7.00	
8735 UIA protein	10IA	Y 31 S	Н	43.14	5.80	-2.30	22.00 7.00	
12236 Ketosteroid isomerase	10H0	Y 30 S (PDB: Y 32 S; PIR: Y 32 S)	8	0.00	10.60	13.70	25.00 7.00	
2655 Staphylococcal nuclease	ISTN	Y 27 S	S	10.29	2.00	-3.00	20.00 7.00	
1678 Barnase	IBNI	Y 17 S	Н	56.62	6.80	-2.00	25.00 6.30	
12235 Ketosteroid isomerase	10H0	Y 14 S (PDB: Y 16 S; PIR: Y 16 S)	Н	3.18	12.40	11.90	25.00 7.00	
1 O 🗆 e 🖬 🏦	1	Q 8 😭	0	71.60	6.70	0.30	36.00.7.40	× 01 ₫ 🖂 428 PM

(Refer Slide Time: 14:45)

So, we start its interesting you can see the delta delta G ok, this is the or because of this descending order we get this Y here right. So, in the, if you put the ascending order let us see level ok.

(Refer Slide Time: 15:01)

- C O www.abren.net/proti	erm/prothern	result.php						Ý
Search Conditie Mutation No.:Sii Method:Denatur ddG_H2O:-100 Sorting by wild_	gle, ints, to 100	is_no,ddg_h2o,						NEXI
Entry Protein	PDB_wi	ld Mutation	Sec.Str	: ASA(%) dG_H	O ddG_H	PH TOT	
88 Barnase	IBNI	A 32 C	н	83.76	6.98	-1.85	25.00 6.30	
203 Staphylococcal nuclease	ISTN	A 60 C	н	55.08	4.30	-1.20	20.00 7.00	
611 Fatty acid binding protein	2IFB	A 104 C	E	3.54	7.10	1.51	20.00 9.60	
604 Fatty acid binding protein	21FB	A 104 C	s	3.54	7.76	2.54	20.00 7.20	
207 Staphylococcal nuclease	ISTN	A 112 C	С	17.51	4.70	-0.80	20.00 7.00	
398 Coiled-coil protein	NULL	A 22 D	NULL	NULL	1.23	-1.80	25.00 7.00	
80 Barnase	IBNI	A 32 D	н	83.76	8.42	-0.41	25.00 6.30	
399 Coiled-coil protein	NULL	A 22 E	NULL	NULL	0.33	-2.70	25.00 7.00	
381 Acylphosphatase	NULL	A 28 E	NULL	NULL	4.45	0.41	28.00 5.50	
77 Barnase	IBNI	A 32 E	н	83.76	8.96	0.13	25.00 6.30	
5907 Staphylococcal nuclease	ISTN	A 58 E	Н	0.00	5.00	-6.90	20.00 8.00	
5908 Staphylococcal nuclease	ISTN	A 58 E	н	0.00	4.70	-6.90	20.00 9.00	
5909 Staphylococcal nuclease	ISTN	A 58 E	н	0.00	3.90	-6.40	20.00 9.90	
5906 Staphylococcal nuclease	ISTN	A 58 E	Н	0.00	6.90	-4.80	20.00 5.90	
5905 Staphylococcal nuclease	ISTN	A 58 E	Н	0.00	7.50	-4.50	20.00 4.90	
5904 Staphylococcal nuclease	ISTN	A 58 E	н	0.00	5.70	-3.80	20.00 3.90	
5930 Staphylococcal nuclease	1STN	A 90 E	С	0.00	3.30	-8.60	20.00 8.00	
5931 Staphylococcal nuclease	ISTN	A 90 E	C	0.00	3.30	-8.20	20.00 9.10	•
5929 Staphylococcal nuclease	1STN	A 90 E	С	0.00	4.00	-7.70	20.00 5.90	T
5927 Staphylococcal nuclease	ISTN	A 90 E	C	0.00	1.90	-7.50	20.00 3.90	
5928 Staphylococcal nuclease	ISTN	A 90 E	C	0.00	4.70	-7.10	20.00 4.90	
5967 Staphylococcal nuclease	ISTN	A 109 E	C	0.00	3.40	-8.10	20.00 9.10	
00250		Q 3 Q	C	0.00	130	3.50	30.00 3.00	A 00 🖉 🖂 428 PM 🗔

So, here if you see the same mutations A to C, because alanine is the first one then you put C right. So, say different protein is barnase and they sub nucleus fatty acid binding protein, the here is these two the same data, the these two A 1 C 104 C 104 C same protein maybe different conditions.

This way secondary structure right, you can see this a values are different is 1.251 1 point we get pH is different is 9.6 this 1.2 right.

(Refer Slide Time: 15:34)

ProTherm search result X								θ_σ×
€ → C @ www.abren.net/prother	m/protherm	_result.php						Ý
25909 Staphylococcal nuclease	ISTN	A 58 E	н	0.00	3.90	-6.40	20.00 9.90	
25906 Staphylococcal nuclease	ISTN	A 58 E	н	0.00	6.90	-4.80	20.00 5.90	
25905 Staphylococcal nuclease	ISTN	A 58 E	н	0.00	7.50	-4.50	20.00 4.90	
5904 Staphylococcal nuclease	ISTN	A 58 E	н	0.00	5.70	-3.80	20.00 3.90	
5930 Staphylococcal nuclease	ISTN	A 90 E	С	0.00	3.30	-8.60	20.00 8.00	
5931 Staphylococcal nuclease	ISTN	A 90 E	С	0.00	3.30	-8.20	20.00 9.10	
5929 Staphylococcal nuclease	ISTN	A 90 E	С	0.00	4.00	-7.70	20.00 5.90	
5927 Staphylococcal nuclease	ISTN	A 90 E	C	0.00	1.90	-7.50	20.00 3.90	
5928 Staphylococcal nuclease	ISTN	A 90 E	С	0.00	4.70	-7.10	20.00 4.90	
5967 Staphylococcal nuclease	1STN	A 109 E	С	0.00	3.40	-8.10	20.00 9.10	
5966 Staphylococcal nuclease	ISTN	A 109 E	С	0.00	4.20	-7.70	20.00 7.90	
5965 Staphylococcal nuclease	ISTN	A 109 E	С	0.00	6.20	-5.50	20.00 6.00	
5964 Staphylococcal nuclease	1STN	A 109 E	C	0.00	6.80	-5.00	20.00 5.00	
5963 Staphylococcal nuclease	ISTN	A 109 E	С	0.00	5.10	-4,40	20.00 3.90	
5978 Staphylococcal nuclease	ISTN	A 132 E	Н	0.00	3.00	-8.50	20.00 9.00	
5977 Staphylococcal nuclease	ISTN	A 132 E	н	0.00	3.70	-8.20	20.00 7.90	
5976 Staphylococcal nuclease	ISTN	A 132 E	Н	0.00	4.90	-6.80	20.00 6.00	
5975 Staphylococcal nuclease	ISTN	A 132 E	Н	0.00	6.00	-5.80	20.00 4.90	
388 Coiled-coil protein	NULL	A 22 F	NULL	NULL	4.23	1.20	25.00 7.00	
79 Barnase	IBNI	A 32 F	Н	83.76	8.40	-0.43	25.00 6.30	
131 Staphylococcal nuclease	ISTN	A 60 F	н	55.08	4.70	-0.80	20.00 7.00	
148 Staphylococcal nuclease	1STN	A 102 F	н	16.42	3.60	-1.90	20.00 7.00	
150 Staphylococcal nuclease	ISTN	A 112 F	С	17.51	3.90	-1.60	20.00 7.00	
215 Staphylococcal nuclease	ISTN	A 112 F	С	17.51	4.20	-1.30	20.00 7.00	
1591 Alpha1-antitrypsin	10LP	A 183 F	NULL	NULL	NULL	1.50	25.00 6.50	
1595 Alpha1-antitrypsin	10LP	A 248 F	NULL	NULL	NULL	1.80	25.00 6.50	
985 Acyl-coenzyme a binding protei	2ABD	A9G	н	8.17	6.08	-2.00	5.00 5.30	
988 Staphylococcal nuclease	1STN	A 12 G	С	13.52	3.10	-2.40	20.00 7.00	
435 Fibronectin	ITTG	A 13 G	S	30.22	NULL	-0.93	25.00 5.00	
i O 🗇 e 🖬 💼 😰	1 0	0 0						A 61 # 🗔 429 M 😡

All also you can see this A 132 E so, you can see the difference in values minus 8.5 to minus 5.8 ok. This is major difference it is dependent upon the different pH the effect of pH.

So, if you have the delta g values, a same mutation from different pH, then you can do the analysis what is the effect of pH on it is particular mutation. If you can generalize for the different proteins, then we can make an analyses ok, this is the case for the general generally for different proteins, you can do analyses and to see whether you can generalize, or we cannot generalize depending upon the protein or not right.

(Refer Slide Time: 16:14)

Distance in the second	ARRANGE AND	DSA	н	61.00	8.94	-0.99	35.00 6.30	
236 Barnase H Barnase	IBNI	DSA	H	61.00	7.97	-0.99	25.00 6.30 25.00 6.30	
H Barnase 8684 Alkaline proteinase inhibitor	1BNI NULL	DIOA	Н	45.87	6.50	2.70	25.00 6.30	
			S	45.87	0.50	3.30	25.00 7.10	
	2RN2	D 10 A	Ы	54.20	8.43	-0.39	25.00 5.30	
	IBNI	D 12 A		54.20	8.43 NULL	-0.34		
472 Barnase	IBNI	D 12 A	Н		9.59	-0.34	25.00 6.30	
237 Barnase	IBNI	D 12 A	н	54.20			25.00 6.30	
683 Barnase	IBNI	D 12 A	Н	54.20	10.12	0.11	25.00 6.30	
8985 Ribosomal protein L30E	1H7M	D 12 A	Н	80.50	11.60	0.24	25.00 7.40	
787 Chemotactic protein	ICEY	D 12 A	C	3.19	8.10	2.50	25.00 7.00	
788 Chemotactic protein	ICEY	D 13 A	C	40.04	8.30	2.70	25.00 7.00	
4398 Aspartate aminotransferase	IAMQ	D 15 A	NULL		NULL	-5.90	25.00 7.50	
4397 Aspartate aminotransferase	IAMQ	D 15 A	NULL	47.08	NULL	-5.80	25.00 7.50	
4399 Aspartate aminotransferase	<u>IAMQ</u>	D 15 A	NULL		NULL	-5.10	25.00 7.50	
8142 Spectrin	IAJ3	D 16 A (PDB: D 17 A; PIR: D 1779 A)	Н	28.24	6.10	-0.20	25.00 7.00	
565 Staphylococcal nuclease	ISTN	D 19 A	Т	3.40	5.50	-0.10	20.00 7.00	
685 Staphylococcal nuclease	ISTN	D 19 A	Т	6.80	5.30	-0.10	20.00 7.00	
92 Arc repressor	LARR	D 20 A	Н	36.22	10.10	-0.80	25.00 7.50	
989 Acyl-coenzyme a binding protei	2ABD	D 21 A	Н	18.46	7.68	-0.40	5.00 5.30	
567 Staphylococcal nuclease	ISTN	D 21 A	Т	6.80	6.30	0.70	20.00 7.00	
683 Staphylococcal nuclease	ISTN	D 21 A	Т	6.80	6.10	0.70	20.00 7.00	
6445 Ribosomal protein L9	IDIV	D 23 A	T	67.87	4.30	-0.51	25.00 5.40	
6441 Ribosomal protein L9	1DIV	D 23 A	Т	67.87	3.99	-0.46	25.00 5.40	
6446 Ribosomal protein L9	IDIV	D 23 A	Т	67,87	3.53	1.13	25.00 5.40	
6442 Ribosomal protein L9	IDIV	D 23 A	Т	67.87	3.27	1.25	25.00 5.40	
001 Thioredoxin	2TRX	D 26 A	S	0.76	13.20	3.70	25.00 7.00	

So, now, if you see this you can see the display is more than three 100 right in this case if you want to change it right here, you can increase the number and, if you start it takes a time because we need to not everything it is not. So, slow so you can get the unity it is more because salaries, it is displayed 1 to 3000. So, you have more number of data and you can increase a numbers and do that ok.

So, now, the in this case if you are interested more details on the first mutation barnase here, we will going to any information. So, what you do in this case the display option, you also click on the reference right and, if you are interested in the mutant structures, then we take click on mutant also right, then if you going to starts right then reduce this number.

(Refer Slide Time: 17:05)

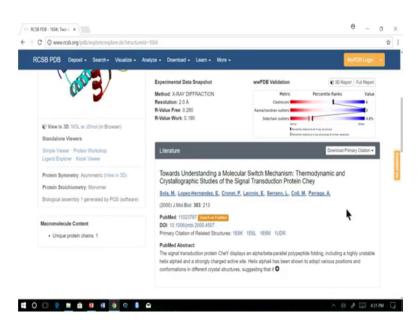
•	C @ www.abren.net/p		rotherm_resul	t.php							Ý
	Search Cond Mutation No. Method:Dena ddG_H2O :-1 Sorting by wi	Single, turants, 00 to 100	t_res,res_no,o	ddg_h2o,							NEX
Entry	Protein	PDB_wi	ld PDB_mut	ant Mutation	Sec.Str	ASA(%) dG_H	O ddG_H2O	т	pН	REFERENCE
88	Barnase	IBNI	NULL	A 32 C	Н	83.76	6.98	-1.85	25.00	6.30	J MOL BIOL 227, 560-568 (1992) PMID: 1404369
203	Staphylococcal nuclease	ISTN	NULL	A 60 C	н	55.08	4.30	-1.20	20.00	7.00	PROTEIN SCI 4, 2545-2558 (1995) PMID: 8580845
611	Fatty acid binding protein	2IFB	NULL	A 104 C	Е	3.54	7.10	1.51	20.00	9.60	BIOCHEMISTRY 32, 11015-11021 (1993) PMID: 8218166
1604	Fatty acid binding protein	2IFB	NULL	A 104 C	s	3.54	7.76	2.54	20.00	7.20	BIOCHEMISTRY 32, 11015-11021 (1993) PMID: 8218166
0207	Staphylococcal nuclease	ISTN	NULL	A 112 C	С	17.51	4.70	-0.80	20.00	7.00	PROTEIN SCI 4, 2545-2558 (1995) PMID: 8580845
8398	Coiled-coil protein	NULL	NULL	A 22 D	NULL	NULL	1.23	-1.80	25.00	7.00	J MOL BIOL 300, 377-402 (2000) PMID: 10873472
180	Barnase	<u>IBNI</u>	NULL	A 32 D	Н	83.76	8.42	-0.41	25.00	6.30	J MOL BIOL 227, 560-568 (1992) PMID; 1404369
199	Coiled-coil protein	NULL	NULL	A 22 E	NULL	NULL	0.33	-2.70	25.00	7.00	J MOL BIOL 300, 377-402 (2000) PMID: 10873472
381	Acylphosphatase	NULL	NULL	A 28 E	NULL	NULL	4.45	0.41	28.00	5.50	J MOL BIOL 300, 633-647 (2000) PMID: 10884358
77	Barnase	IBNI	NULL	A 32 E	Н	83.76	8.96	0.13	25.00	6.30	J MOL BIOL 227, 560-568 (1992) PMID; 1404369
5907	Staphylococcal nuclease	<u>ISTN</u>	NULL	A 58 E	Н	0.00	5.00	-6.90	20.00	8.00	PROC NATL ACAD SCI U S A 107, 16096- 16100 (2010) PMID: 20798341
5908	Staphylococcal nuclease	ISTN	NULL	A 58 E	Н	0.00	4.70	-6.90	20.00	9.00	PROC NATL ACAD SCI U S A 107, 16096- 16100 (2010) PMID: 20798341

Now, this number is not necessary right. So, you reduce 300 so, we will see these the reference right and the some of the cases PD mutant is most (Refer Time: 17:17) of element if it is lysozyme you can get the a mutant a data.

So, I cannot is it is nothing is not to displayed here you can see the mutant structure right.

€ 0	X @ www.abren.net/pro	otherm/pro	therm_result.pl	hp							☆	
17 1	Barnase	IBNI	NULL	D 12 A	Н	54.20	8.43	-0.39	25.00 6.30 J MOL BIOL 224, 78	3-804 (1992) PM	D:	
472 1	Bamase	IBNI	NULL	D 12 A	Н	54.20	NULL	-0.34	25.00 6.30 J MOL BIOL 224, 73 1569552	3-740 (1992) PM	D:	
237 1	Barnase	IBNI	NULL	D 12 A	н	54.20	9.59	-0.34	25.00 6.30 J MOL BIOL 216, 10 2266554	<u>31-1044 (1990) P</u>	MID:	
683	Bamase	IBNI	NULL	D 12 A	Н	54.20	10.12	0.11	25.00 6.30 BIOCHEMISTRY 29	9343-9352 (199)) PMI	0
8985	Ribosomal protein L30E	<u>1H7M</u>	NULL	D 12 A	Н	80.50	11.60	0.24	25.00 7.40 BIOCHEMISTRY 44 PMID: 16363795	16817-16825 (2	005)	
787	Chemotactic protein	ICEY	<u>1E6K</u>	D 12 A	С	3.19	8.10	2.50	25.00 7.00 J MOL BIOL 303, 21 11023787	3-225 (2000) PM	D:	
788	Chemotactic protein	ICEY	<u>11E6L</u>	D 13 A	С	40.04	8.30	2.70	25.00 7.00 J MOL BIOL 303, 21 11023787	3-225 (2000) PM	D:	
4398	Aspartate aminotransferase	IAMQ	NULL	D 15 A	NULL	47.08	NULL	-5.90	25.00 7.50 BIOCHEMISTRY 48	433-441 (2009)	PMID:	
4397	Aspartate aminotransferase	IAMQ	NULL	D 15 A	NULL	47.08	NULL	-5.80	25.00 7.50 BIOCHEMISTRY 48	433-441 (2009)1	PMID:	
4399	Aspartate aminotransferase	IAMQ	NULL	D 15 A	NULL	47.08	NULL	-5.10	25.00 7.50 BIOCHEMISTRY 48	433-441 (2009)	PMID:	
8142	Spectrin	<u>1AJ3</u>	NULL	D 16 A (PDB: D 17 A; PIR: D 1779 A)	Н	28.24	6.10	-0.20	25.00 7.00 J MOL BIOL 344, 20 15504412	7-221 (2004) PM	D:	
565	Staphylococcal nuclease	ISTN	NULL	D 19 A	т	3.40	5.50	-0.10	20.00 7.00 BIOCHEMISTRY 35	6443-6449 (199	6) PMI	2
685	Staphylococcal nuclease	ISTN	NULL	D 19 A	Т	6.80	5.30	-0.10	20.00 7.00 J MOL BIOL 235, 27 8289248	-32 (1994) PMID	4	
592	Arc repressor	IARR	NULL	D 20 A	Н	36.22	10.10	-0.80	25.00 7.50 NAT STRUCT BIOL 7664079	1, 518-523 (1994) PMII	Ł
	Acyl-coenzyme a binding protei	2ABD	NULL	D 21 A	Н	18.46	7.68	-0.40	5.00 5.30 NAT STRUCT BIOL 10360367			
Sec. 1	a and a second second			D D A	Т	6.80	6.30	0.70	20.00 7.00 BIOCHEMISTRY 35	6443-6449 (199	6) PMI	0

(Refer Slide Time: 17:28)


If you click on this one E 6 L here a 1 E 6 k it is a pretty bady.

(Refer Slide Time: 17:36)

Image: Control of the product regions regions do https://www.cob.org/indication More and a control of the product of the prod	C RCSB PDB - 166K: Two-c X			θ _ σ >
<complex-block><complex-block><complex-block><complex-block><complex-block></complex-block></complex-block></complex-block></complex-block></complex-block>	E -> X 🕲 www.rcsb.org/pdb/explore/explore do?structure	eld=1E6K		☆
Search by POB D, author, macrometeode, sequence, or igand Control D D D, author, macrometeode, sequence, or igand Control D D D, author, macrometeode, sequence, or igand Control D D D, author, macrometeode, sequence, or igand Control D D D, author, macrometeode, sequence, or igand Control D D, author, macrometeode, sequence, or igand Control D D, author, macrometeode, sequence, or igand Control D D, author, macrometeode, sequence, or igand Control D D, author, macrometeode, sequence, or igand Control D D, author, macrometeode, sequence, or igand Control D D, author, macrometeode, sequence, or igand Control D D, author, macrometeode, sequence, or igand Control D D, author, macrometeode, sequence, or igand Control D D, author, macrometeode, sequence, or igand Control D D, author, macrometeode, sequence, or igand Control D D, author, macrometeode, sequence, or igand Control D D, author, macrometeode, sequence, or igand Control D D, author, macrometeode, sequence, or igand Control D D, author, macrometeode, sequence, or igand Control D D, author, macrometeode, sequence, or igand Control D D, author, macrometeode, sequence, or igand Control D D, author, macrometeode, sequence, or igand Control D D, author, macrometeode, sequence, or igand Control D D, author, macrometeode, sequence, or igand Control D D, author, macrometeode, sequence, or igand Control D D, author, macrometeode, sequence, or igand Control D D, author, macrometeode, sequence, or ig	RCSB PDB Deposit - Search - Visualize -	Analyze - Download - Learn - More -		MyPOB Login +
Bologood Assembly 1 Asembly 1 Assembly 1 Assembly 1 A	PROTEIN DATA BANK Research and Educa	tion Advanced Search Browse by A		STATE OF
DOI: 10.2210/pdb1el&ipdb Classification: <u>SIGNALING PROTEIN</u> Deposition author(s): <u>SigNALING PROTEIN</u> Deposition author(s): <u>SigNALING PROTEIN</u> Deposition author(s): <u>SigNALING PROTEIN</u> Deposition author(s): <u>SigNALING PROTEIN</u> Expression System: <u>ESCHERICHIA COLI</u> Mutation(s): 2 Experimental Data Snapshot wwPDB Validation © 30 Report Full Report				
Classification: <u>BIONALING PROTEIN</u> Deposited: 2000-00-16 Relased: 2001-03-05 Deposited: 2002-00-16 Relased: <u>Deposition authority</u> ; <u>Biola M. Loose-Hermandez, E. Crones, P. Lacroix, E. Serrano, L. Coll, M. Parsaa, A.</u> Organism: <u>Elscherichia coll</u> Expression System: ESCHERICHIA COLL Mutatoricy; 2 Experimental Data Snapshot wwPDB Validation © 30 Report Full Report	-		on system D12A mutant of CheY	
	and the second s	Classification: <u>SIGNALING PROTEIN</u> Deposited: 2000-08-18 Released: 2001-03 Deposition author(s): <u>Sola. M., Lopez-Hen</u> Organism: <u>Escherichia coli</u> Expression System: ESCHERICHIA COLI	rnandez, E., Cronet, P., Lacroix, E., Ser	rano, J., Coll. M., Parraga, A.
Method: X-RAY DIFFRACTION Metric Percentile Ranks Value				
		Experimental Data Snapshot	wwPDB Validation	30 Report Full Report

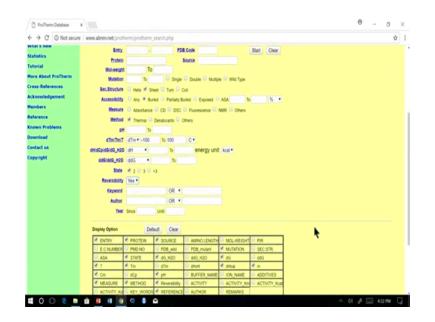
So, you can see this is the mutant all right.

(Refer Slide Time: 17:41)

So, you can see this right. So, you can see the, this is the wild type and this is the mutation and, you can see this one.

(Refer Slide Time: 17:50)

← → C ③ www.abren.net/;	rotherm/pr	otherm_resul	Lphp					\$
1048 Tumor suppressor P53 complexed	ITUP	NULL	C 242 S	С	13.60	6.82	-2.94	10.00 7.20 PROC NATL ACAD SCI U S A 94, 14338- 14342 (1997) PMID: 9405613
1786 Cytochrome c	IYCC	NULL	C 102 T	С	0.85	6.40	2.30	27.00 7.20 BIOCHEMISTRY 31, 12337-12344 (1992) PMID: 1334426
167 Iso-1 cytochrome c	IYCC	NULL	C 102 T	С	0.85	6.48	4.09	30.00 7.00 EUR J BIOCHEM 223, 155-160 (1994) PMID: 8033888
1325 Lysozyme	<u>2LZM</u>	NULL	C 54 Y	Т	2.64	NULL	-5.02	22.00 7.00 BIOCHEMISTRY 30, 589-594 (1991) PMID: 1988046
8981 Ribosomal protein L30E	<u>1H7M</u>	NULL	D 2 A	С	56.63	10.84	-0.53	25.00 7.40 BIOCHEMISTRY 44, 16817-16825 (2005) PMID: 16363795
471 Barnase	IBNI	NULL	D 8 A	н	61.00	NULL	-0.99	25.00 6.30 JMGL BIOL 224, 733-740 (1992) PMID: 1569552
236 Barnase	IBNI	NULL	D 8 A	н	61.00	8.94	-0.99	25.00 6.30 I MOL BIOL 216, 1031-1044 (1990) PMID: 2266554
H Barnase	IBNI	NULL	D 8 A	н	61.00	7.97	-0.85	25.00 6.30 LMOL BIOL 224, 783-804 (1992) PMID: 1569557
Alkaline proteinase inhibitor	NULL	NULL	D 10 A	н	45.87	6.50	2.70	25.00 7.10 BIOCHEMISTRY 44, 2469-2477 (2005) PMID: 15709759
017 Ribonuclease HI	2RN2	NULL	D 10 A	s	12.77	13.00	3.30	25.00 5.50 NAT STRUCT BIOL 6, 825-831 (1999) PMID: 10467093
17 Barnase	IBNI	NULL	D 12 A	н	54.20	8.43	-0.39	25.00 6.30 I MOL BIOL 224, 783-804 (1992) PMID: 1569557
1472 Barnase	<u>IBNI</u>	NULL	D 12 A	Н	54.20	NULL	-0.34	25.00 6.30 1MOL BIOL 224, 733-740 (1992) PMID: 1569552
237 Barnase	IBNI	NULL	D 12 A	н	54.20	9.59	-0.34	25.00 6.30 1 MOL BIOL 216, 1031-1044 (1990) PMID: 2266554
683 Bamase	IBNI	NULL	D 12 A	н	54.20	10.12	0.11	25.00 6.30 BIOCHEMISTRY 29, 9343-9352 (1990) PMID: 2248951
18985 Ribosomal protein L30E	IH7M	NULL	D 12 A	н	80.50	11.60	0.24	25.00 7.40 BIOCHEMISTRY 44, 16817-16825 (2005) PMID: 16363795
na rebi nîm nîh gov/pubrast/16363725		11	2 A	С	3.19	8.10	2.50	25.00 7.00 IMOL BIOL 303, 213-225 (2000) PMID: 11023787


So, if you want to get the complete information you will go to the purple right. So, in the bio chemistry paper, if you see the purple you can access the abstract.

(Refer Slide Time: 18:03)

NCBI Resources How To	Sign in to NCBI
Distance from PubMed •	Search Holp
ormat Abstract - Send to -	
lochemistry 2005 Dec 27 44(51) 16817-25	Full text links
	ACS Publications
Effects of charge-to-alanine substitutions on the stability of ribosomal protein L30e from Thermococcus celer.	
	Save items
ee C.E. ¹ , Makhatadze Gil, Wong KB.	Add to Favorites
Author information	loading
bistract the bally to rationally engineer a proben with altered stability depends upon the detailed understanding of the role of noncovalent teractions in ordering thermodynemic properties of professis. In this paper, we used T coller L30e as a model to address the question of the iso of charge-drager particular structures and the ballity of this profession. A total of 3 single-air charge-balleness variants of the profession energies and the stability of these professis was determined using thermal- and denaturant-induced unfolding. It was found that, athough 30e is isolated from a thermophic organism and is highly thermostable, some of the subditutions lade to a further increase in the transition 30e is isolated from a thermophic organism and is highly thermostable, some of the subditutions lade to a further increase in the transition some as as important as the hort-range (stat) tricipa) interactions. The charges in stabilities of the T. celer L30e professi variants when the theory and the stability of the competitive states the state of the subditution lade understates and the state of the program dwith the charges in the ensity of the states calculated using different compational modes. It was bound that and compared with the charges in the merse of charge-charge interactions calculated using different compational modes. It was bound that the compared with the charge of the states of the compared with the charges in the transity of the states the term of the compared with the states of the compared balance that the states of the compared with the charges in the ensity of the states of the compared with the states of the compared with the states of the term of the compared with the states of the terms of the states of the terms of the compared with the states of the terms of the states of the terms of the states of the terms of the states of terms of the terms of	Similar articles Exectostatic interactions contribute to reduced hear capacity drampe of unitidia (1 Mui Biol. 2005) Crystal structure of ribosomal protein L30e from the astrone frammolylia (The (Bochomistry 2003) Solution structure and hermal stability of following proteins: Biol. 2003)

And if you have access then you can see the full text right, then you can get all this information right fine right.

(Refer Slide Time: 18:11)

So, now if you want have multiple a choices for example, you are interested only on the buried mutations and in sheets and, obtained with the a thermal denaturation right, then you better to select the dTm, there is a range is minus 1 100 to plus 100 degree C right.

You can see centigrade or Kelvin here also, you can is kilo kcal kilo jule so, (Refer Time: 18:45) so, what is the conversion between kilo kcal and kilo jule right, when kilo kcal equal to 4.18 kilo jule right. So, we can see the number so, if you do like this right, we are simply to dH take S ok, this is commonly used one state 2 2 state values right.

Then if you do like this and here we need to change because, we already it is a thermal it automatically it a put the Tm and the T is not Ta C Tm, we do not need and measure method, we reduce it reversibility is yes is the reference fine, there is m we do not need delta delta G, we need and this we remove it and, if use source we take start oh right.

(Refer Slide Time: 19:32)

C @ www.abren	net/protherm	/protherm_result.php	Ŷ
Sec. Str. Accessi Method dTm: -1	sility:1-Burie		SEX
ntry Protein	PDB_wi	d Mutation	State dG_H2O dG ddG T Tm pH REFERENCE
09 Staphylococcal nucle	ase <u>ISTN</u>	L 25 A	2 NULL NULL NULL 39.90 7.00 PROTEIN SCI 2, 567-576 (1993) PMID: 8518730
15 Staphylococcal nucle	ase <u>ISTN</u>	L 25 A	2 NULL NULL NULL 31.20 5.00 PROTEIN SCI 2, 567-576 (1993) PMID: 8518730
44 Ribonuclease HI	2RN2	D 10 N	2 NULL NULL NULL 53, 80 9 00 1BIOL CHEM 271, 32729-32736 (1996) PMID: 8955106
45 Ribonuclease HI	2RN2	D 10 A	2 NULL NULL NULL NULL 60.70 9.00 [BIOL CHEM 271, 32729-32736 (1996) PMID: 8955106
46 Ribonuclease HI	2RN2	D 10 E	2 NULL NULL NULL NULL 50.40 9.00 [HOL CHEM 271, 32729-32736 (1996) PMID: 8955106
47 Ribonuclease HI	2RN2	D 10 S	2 NULL NULL NULL NULL 56.20 9.00 1BIOL CHEM 271, 32729-32736 (1996) PMID: 8955106
48 Ribonuclease HI	2RN2	D 10 H	2 NULL NULL NULL NULL 55.20 9.00 [BIOL CHEM 271, 32729-32736 (1996) PMID: 8955106
57 Ribonuclease HI	2RN2	D 10 N	2 NULL NULL NULL AV40 300 1BIOL CHEM 271, 32729-32736 (1996) PMID: 8955106
58 Ribonuclease HI	2RN2	D 10 A	2 NULL NULL NULL S8.10.300 1BIOL CHEM 271, 32729-32736 (1996) PMID: 8955106
59 Ribonuclease HI	2RN2	D 10 E	2 NULL NULL NULL NULL 53.80 3.00 LBIOL CHEM 271, 32729-32736 (1996) PMID: 8955106
60 Ribonuclease HI	2RN2	D 10 S	2 NULL NULL NULL 52:40 3:00 J BIOL CHEM 271, 32729-32736

So, delta yes delta delta G did I use this yes is thermal.

(Refer Slide Time: 19:49)

vnload	pH		To							
tact us	dTm/Tm/T		Te		C.					
yright	dH/dCp/dQ/dQ_H20		-	To	energy uni	kcal •				
Audior	dd9/dd9_H2Q		• -100	To 100	0					
	State	2 2 3	□ >3							
	Reversibility	Yes *								
	Keyword			OR .						
	Author			OR .						
	Year	Since	Until							
	Display Option		Default	Clear						
	ENTRY ENTRY	PROTEIN	1 🗆 sc	URCE	AMINO LENGTH	MOL-WEIGHT	PIR			
	E.C.NUMBER	PMD NO	K PC	08_wild	PD8_mutant	MUTATION	SEC.STR.			
	ASA .	STATE	2.00	H20	G10_H20	🛃 dG	🖉 ddG			
	т 🗵	🗹 Tm	🗌 d1		C ONH	dHcal	0 m			
	Cm Cm	в оСр	⇒ pł		BUFFER_NAME	ION_NAME	ADDITIVES			
	MEASURE	METHOD		rversibility	ACTIVITY	ACTIVITY_Km	ACTIVITY_Koa			
	ACTIVITY_Kd	KEY_WO	ROS 🖉 RI	FERENCE	AUTHOR	REMARKS				

Because I need the delta delta G this I now need, yes delta delta G you get the delta delta G values right for the thermal denaturants.

(Refer Slide Time: 20:16)

- C O www.abren.net/	protherm/	protherm_result.php	\$
Search Con Sec. Str. Sh Accessibility Method: The ddG >100 to State :2, Reversibility	set, y:1-Buried rmal, o 100		
Intry Protein	PDB_wi	d Mutation	dG ddG T Tm pH REFERENCE
640 Alpha-lactalbumin	IHEZ	V 42 N	NULL -0.24 NULL 56.20 7.40 PROTEIN ENG 12, 581-587 (1999) PMID: 10436084
641 Alpha-lactalbumin	<u>IHFZ</u>	V 42 A	NULL -0.93 NULL 56:20 7.40 PROTEIN ENG 12, 581-587 (1999) PMID: 10436084
642 Alpha-lactalbumin	<u>IHFZ</u>	V 42 G	NULL -1.15 NULL 56.20 7.40 PROTEIN ENG 12, 581-587 (1999) PMID: 10436084
240 Adenylate kinase	2AKY	V 8 I	2.63 - 25.00 NULL 7.50 EUR J BIOCHEM 231, 405-413 (1995) PMID: 7635152
Acidic fibroblast growth facto	2AEG	C 16 S, H 93 G	NULL-1.39 25:00 NULL-6:60 BIOCHEMISTRY 39, 7153-7158 (2000) PMID: 10852713
0052 Ribonuclease T1	IRNI	W 59 Y	NULL -0.93 25.00 NULL 6.00 EUR J BIOCHEM 220, 527-534 (1994) PMID: 8125111
0054 Ribonnclease T1	IRNI	Y 24 W, W 59 Y	NULL 0.29 25.00 NULL 6.00 EUR J BIOCHEM 220, 527-534 (1994) PMID: 8125111
0055 Ribonuclease T1	IRNI	Y 42 W	NULL -0.14 25.00 NULL 6.00 EUR J BIOCHEM 220, 527-534 (1994) PMID: 8125111
0056 Ribonnclease T1	IRNI	Y 42 W, W 59 Y	NULL -1.03 25.00 NULL 6.00 FUR J BIOCHEM 220, 527-534 (1994) PMID: 8125111
0058 Ribonuclease T1	IRNI	Y 45 W, W 59 Y	NULL-0.91 25.00 NULL-6.00 EUR-J BJOCHEM 220, 527-534 (1994) PMID: 8125111
0060 Ribonuclease T1	IRNI	H 40 T. W 59 Y	NULL -0.93 25:00 NULL 6:00 FUR J BIOCHEM 220, 527-534 (1994) PMID: 8125111

So, you can use this information for the further or analysis as well as for the prediction right.

So, likewise you can the ProTherm you can use to end it up because, it contents if you take the statistics.

(Refer Slide Time: 20:31)

C Statistics of ProTherm ×			θ
€ → C @ www.abren.net/protherm/protherm_st	atphp		\$
	Statistics of ProTh	erm	
	Index		
Summary of data in ProTherm	Summary of data in ProTherm Last of Protein Names Last of Protein Names Propency of Annio Acade an Mar Last of Sources Number of references by year Last of References Last of References		
	Total number of entries	25820	
	Number of unique proteins	740	
	Number of all proteins	1045	
	Number of Proteins with mutants	311	
	Number of Single Mutations	12561	
	Number of Double Mutations	1744	
	Number of Multiple Mutations	1132	
	Number of Wild Type	10383	
0 0 2 5 6 8 9 9 9	0 💧 🖬		A 01 🖉 🗔 434.PM

So, it contents about 25000 entries that unfortunately current a there is no current updates available ProTherm, but even then the available number of data are sufficient for the

analyses. Let us say it is 740 unique proteins right then, they would 311 proteins content of the mutants.

(Refer Slide Time: 20:46)

Statistics of ProTherm K			0 - 0 ×
-) C O www.abren.net/protherm/protherm_st	lat.php		\$
	Number of entries by Absorbance	1197	
	Number of entries of CD	11274	
	Number of entries of DSC	6416	
	Number of entries of Fluorescence	5650	
	Number of entries of NMR	985	
	Number of entries of Others	531	
	Number of entries of Thermal	15839	
	Number of entries of GdnHC1	5843	
	Number of entries of Urea	3931	
	Number of entries of Others	212	
	Total Number of References	1902	
2-oxoglutarate dehydrogenase 3-chymotrypsin-like SARS-CoV m 3-isopropylmalate dehydrogenas			
4-aminobutyrate aminotransfera 4-oxalocrotonate tautomerase			
5-enolpyruvoyl shikimate-3-pho			
75 globulin			
Aacetylcholinesterase Abl protein			
Abrin II			
Acetylcholinesterase Acid phosphatase			
Acid proteinase A			
Acidic calcium-binding protein Acidic fibroblast growth facto			
Actin			

And these are the statistics for the proteins and if you design, this is a protein names, you can list a protein names and the source names and so, on. So, within if you go to the frequency right.

(Refer Slide Time: 21:01)

C www.abren.net/protherm/mu	tation	html																					Ŷ	r
		I	rec	uer	ıcy	of /	۱m	ino	Ac	id F	Res	idu	es i	n N	lut	ati	on S	Site	5					
r		_			_			_			То						_							
í	-i	1	ily A	la Va	Let	He	Cys	Met	Phe	Iyr	Irp	Pro	Ser	Ihr	1 58	Gla	Asp	Glu	Lýs	٨rg	His			
	- 5	× .	2	0 5		0	12	0		2	6	14	55	2	5	26	28	24	6	19	17			
	1	_	_	- 13	-	20		-	<u> </u>	5	8	85	74	44	10	18	14	13	41	5	11			
	- 14	_	73 4	-	- C	288	47	64	-	51	24	6	46	89	28	0		14	13	23	12			
	- 5	_		0 11	3	88	- 55	40		2	4	18	16	14	-	-	13	32	12	23	- 5			
	12				0 236		24	62	93	12	- 8	_	22	32	3	_	9	20	10	9	12			
	12	-)8	41		<u></u>	<u> </u>			4	4	-	_	105	86	0	0	0	4	0	0	0			
	- 5	det 'he	18	- C	4 113	45	_	10	17	4	63	0	0 24	0	1	- 0	6	0	18	21	0			
			31	_	2	_	20	-	185	- 1	0.2	- 0	11	-	21	-		-		3	-			
	From	1. A.	_	-		<u> </u>	_	-	133	69	7.4	-		-	- 1	0	17	-	-	-	7	•		
ſ			66 []	7	7 11		H	-			-	-	68	10	-	-	6		- 2	-	1.0			
	12		28 2	2 1		10	29		13	-6	2	\$		28	20	4	66	6	20	37	26			
		_	37 2	4 12	6 3		38		24	28	2	1	118		20	27	18	92	7	40	21			
	6	Lsn	34	8	6 (51	6	12	4	0	1		33	10		5	97	22	13	11	41			
	R	iln	42	4	3 23	3	12	3	3		0	9	3	1	14		10	34	33	14	6			
	Þ	\sp[58 1	9	8 5	9	33	4	14	7	8	12	20	10	158	11		64	67	16	54			
	k	ilu	50 2	9 6	48	6	10	16	25	29	17	8	29	12	13	103	32		134	30	13			
	ji ji	.98	85 2	7 2	3 1:	35	18	46	46	18	27	23	13	18	22	41	13	99		79	37			
	Į	١rg	40 1	1	4 12	0	19	18	3	0	1	1	8	2	0	20	1	71	26		67			
	- F	lis	38	2 1	0 41	0	7	0	10	69	2	24	6	21	47	51	21	17	6	12				

You can see the frequency table I showed this earlier so, you can see the some mutations are highly preferred because, they experimental lists they do not want to spend the money for a any on order mutant. So, they like to have some specific mutations to understand, what will happen with their particular mutation, this is why if you see many mutations to alanine to understand the effect of this is a side chain right.

So, likewise you can get the statistics right. Now, if you go to the tutorial right. So, if it is a so, here we gave four different a questions first question is search a data for single mutation, in helical sequence obtained with thermal denaturation experiments, what will do with this what are the search after you need to use right.

(Refer Slide Time: 21:49)

- C O www.abres	unet/protherm/tdpm_example1.php	\$
17	for Proteins and Mutants	
Home ProThe		
	Data updated: Feb. 22 2013	
Go		
Advanced Search	Tutorial 1	
verview	Search data for single mutations in <u>Proton Reguments</u> obtained by thermal denaturation experiments at pH 7.	
Vhat's New	Fill or select the necessary items, check the items to be displayed, and click the start button.	
tatistics		
utorial		
ore About ProTherm	Entry Start Clear	
ross-References	Citra Citra	
cknowledgement	Protein	
lembers	Materia Ta Materia Marke Marketa Miller	
oference	Mutation To MSingle WDouble WMultiple WWild Type	
nown Problems	Sec.Structure MHelix IISheet IITurn IIICoil	
beenneed	Accessibility (Spring (Buried (Partially Buried (Exposed (ASA To 5 -	
iontact us	Measure IIIAbsorbance IIICD IIIDSC IIIFluorescence IIINMR IIIOthers	
opyright	Method WThermal @GdnHCl @Urea @Others	
	pH 7 To 7	
	dim/im/I dim - To	

We need the because the question is helical sequence. So, we need to a click on a helical and the single mutation and, you can click on the single mutation right. And the accessibility does not matter because; we wrote we are not interested in we taking anything on the pH 7. So, you have got the pH 7 to 7 thermal denaturation. So, you put thermal now if you do like this.

(Refer Slide Time: 22:13)

C @ www.abren.net/p	Management and		1 × 1				\$
			τ.				
	dH/dCp/dG_H		10				
	Sta	le Ⅲ2Ⅲ3Ⅲ>3					
	Reversibili	ty Any -					
	Keywor	4		OR =			
	Autho	X.		OR 🛥			
			Until				
		ar Since	Unit				
	Display Option	PROTEIN	E.C.NUMBER	IPMD.NO	PDB_wild	UPDB_mutant	
	MUTATION		ASA SA	ISTATE	BdG_H20	UddG_H20	
	ING INTION	BidG	T/Tm	#dTm	IndH	lim	
	Cm	lidCp	*oH	MEASURE	METHOD	Reversibility	
	ACTIVITY		CTIVITY_Kee	ACTIVITY_K	KEY_WORDS		
	AUTHOR	REMARKS					
	Sorting By	OFF -	OFF	OFF	- 0)FF =	
	Display hit list	from No. 1	to No. 100		Start	Clear	
					_	_	
			Here is the ret	ult of the example:			
	P-1-	Budde	-			m II Marked	
	Entry	Protein YLOCOCCAL				Tm pH Method	
	110 NUCLE		ISTN Ve	6L H	1.50 0.80 3	.90 7.00 Thermal	

Right then, currently we click the display option, then we will start this then finally, we get the data now it is symbol the first one.

(Refer Slide Time: 22:24)

ProTherm: Tutorial2	x D frequency of Amino Aci X	θ	σ×
← → C ③ www.abren	unet/protherm/tdpm_example2.php		立 :
2	for Proteins and Mutants		
Home ProTher	m ProNIT Biomolecules Gallery		
Feb. 22 2013			_
Go			
Advanced Search	Tutorial 2		
Advanced Search	Search data for mutations in builed region by urea denaturation and CD measurement at temperature between 15 and 25 degrees, and sort the output all temperature	and particles are a	
Overview		and residue num	toer.
What's New	Fill or select the necessary items, check the items to be displayed, and click the start button.		
Statistics			
Tutorial	Entry Clear		
More About ProTherm	Protein		
Cross-References			
Acknowledgement	Mutation To IIISingle IIDouble IIMultiple IIWild Type		
Members	Sec.Structure Helix Sheet Turn Coll		
Reference	Accessibility, @Any @Buried @Partially Buried @Exposed @ ASA To To		
Known Problems	Measure WAbsorbance CD WDSC WFluorescence WNMR WOthers		
Download	Method Thermal Odni+Cl Utea Others		
Contact us	pH To		
Copyright			
	dTm/Tm/T T 🛥 15 To 25		
	04G/04G_BLQ 0403 To		
	dH/dCp/dG_Ho0 dH To		
1 O O e =	🛍 😰 🗷 🔮 🗣 🛢 🖴 👘 🖂	<i>∲</i> 🗔 436	PM 🗔

And go a second one this is with the denaturant denaturation here, we have the buried helix region, buried means, you have to get the accessibility buried right and, then you can see the urea denaturation. So, you put the urea and the CD measurement you put the CD and the temperature between 15 and 25 degrees, you see the temperature and, if we start out by temperature residue number.

(Refer Slide Time: 22:46)

C O www	.abren.net/protherm/tdpm_ex						Ŷ
	dTm/Tm/	I T -	15 To 25				
	d4G/d4G_Hz	2 dd3 =	To				
	dH/dCp/dG_Ha	0 dH 🛥	To D				
	Stat						
	Reversibilit	x Any =					
	Kittinaio						
	Keywor	1		OR 🛥			
	Autho			OR -			
			_				
	Yes	r Since	Until				
	Display Option						
		PROTEIN	E.C.NUMBER	PMD.NO	PDB_wild	IPDB_mutant	
	MUTATION		MASA	STATE	dG_H20	1959G_H20	
	∭dG	ddG	MT/Tm	0dTm	∎dH	i∰m	
	i∰Cm	∎dCp	Hogel H	MEASURE	METHOD	Reversibility	
			ACTIVITY_Ke	ACTIVITY_B	d KEY_WORD	SEFERENCE	
	MAUTHOR	REMARKS					
	Sorting By	fTm/Tm/T -	01_831	OFF	-	OFF =	
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
	Display hit list f	rom No. 1	to No. 100	1	Start	Ciear	
					result of the example		

So, in this case sorting you need to change temperature residue number right and, if we start and we will get the data is the one for these things right. Then the will take one more example.

(Refer Slide Time: 23:01)

€ ⇒ C © www.abrer	anet/protherm/tdpm_example3.php	\$
	et ProTherm	
8/ \	S Thermodynamic Databas for Proteins and Mutants	
Home ProThe	rm ProNIT Biomolecules Gallery	
22 2013		
Go	-1 >=	
Advanced Search	Tutorial 3	
	Search data for revensible mutations from Asp to any other residues with solvent accessibility of Asp ranging from 0 to 50%, which were pu	blished between \$96 and 1999, and sort the
Overview	output by publication year, accessibility and mutant residue.	1
What's New	Fill or select the necessary items, check the items to be displayed, select the sorting option, and click the start button,	
itatistics		
futorial	Entry Start Clear	
More About ProTherm		
cross-References	Protein	
Acknowledgement	Mutation D To Single Double Multiple Wild Type	
4embers	Sec.Structure   Helix   Sheet   Turn   Coil	
teference		
Cnown Problems	Accessibility @Any @Buried @Partially Buried @Exposed @ASA 0 To 50 % -	
Download	Measure   Absorbance   CD    DSC    Fluorescence    NMR    Others	
Contact us	Method UThermal UGdnHCI UUrea UOthers	
Copyright	рН	

So, for example, reversible mutation and aspartic acid to any other residues; so, wild type residues aspartic acids now here is aspartic residues here, D to any other residue. So, in this case I put blank right, then you use the other conditions accessibility and the year of publication between 96 to 99 right.

### (Refer Slide Time: 23:21)

Active       Control         Accounting       Matalas         Diron       USingle (Double (Multiple (Wild Type))         SecStractare       UHelix (Sthert (Trun (UCo))         Accounting       Accounting (CO) (UDC) (Flucteorone (UMAR, (UOthers))         Accounting       Mesure         Accounting       UAborcharce (CO) (UDC) (Flucteorone (UMAR, (UOthers))         Accounting       Method         Accounting       Accounting         Accounting       Accounting (USC) (Flucteorone (UMAR, (UOthers))         Accounting       Accounting         Accounting       <	- C O www.abren	.net/protherm/tdpm_example:	l php				\$
Inner     Matation     0     To     ISingle IIDouble IIMuitige IIW/ISiType       Inners     SecSITRiture IIHein IShet ITuru IIColl       Inners Problems     Accessibility     4Apry @Build @Partially Bained @Exposed @ASA IIIT 0     0     IIIII       Inners Problems     Massaue     Machine IIColl IIColl @Exposed @ASA IIIIII     0     0     IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII							
services     SecStracture     uHvin upber uHvin upber uHvin upber       afterace     Accessibility     AAry @Buriet @Partially Bariet @Exposed @ASA To B0 * •       servicad     Measure     UAborbance (JCD upbC) (pharesome (WMR, Upbers)       antact us     Method     UTm = 10 addition (Uppe (Upbers)       afterChaft     after To *       dTmCTmart     dTm = 10 addition (Uppe (Upbers)       dAccessibility     etc.       dAccessibility     after To *       dAccessibility     etc.       dAccessibility     etc.       dAccessibility     etc.       variable     etc.       dAccessibility     etc.       variable     etc.       dAthor     etc.       variable     etc.       variable     etc.       variable     etc.       etc.     etc.       et	cknowledgement	Manual II	To De la Cinete al Deut	to information and the Tree			
Accessibility QAry QBuriet QPartially Barriet QExposed QASA 0 To 00 0 0 membrade ontact us sepright DI To dtactad_lho 665 0 dtactad_lho 665 0	embers			ose illivionipie illiving typ	R		
emilad     Measure     WAborburch (JCD UDSC UPlacescore (WARK UDthers Method UThernal UDdbfCl UDtes)       spyright     Juli     To       dTmrTmuT     dTm u     To       dAddad_thQ     ddCu     To       dAddad_thQ     ddCu     To       dHidtQedd_thQ     ddCu     To       dAddad_thQ     ddCu     To       dAddad_thQ     ddCu     To       dAsther     Court     To       Asther     Court     Court       Ver     Court     Court       Cupier Option     Urril 1999       Dupler Option     UC NUMBER     gPAD NO       gNTRY     UPOT     GSAA	eference	Sec.Structure III	felix igSheet igTurn igCoil				
entatics Mithelia (Thermail (Golder) (Total) (Golder) enyright bit To dTm/Tm/T dTm To ddGddg_Ho0 d+G To State U2 (U3 U 3) U3 Recentibility Yes - Keywed OR To Yes Since Syste Urill 1999 Diploy Option ENTRY (FROTEIN (EC.NUMBER (FMD NO #OB_wild (FDB_mither) State (SC.NUMBER (FMD NO #OB_wild (FDB_mither) State (SC.NUMBER (FMD NO #OB_wild (FDB_mither) SC.NUMBER (FMD NO #OB_wild (FDB_mither) SC.NUMBER (FMD NO #OB_wild (FDB_mither)	nown Problems	Accessibility @	Any @Buried @Partially Buried	Exposed & ASA 0	To 50	\$ w	
spyright pl pl pro- dTm:Tm:T dTm = To ddGddG_HLQ dH = To dHdCpdG_HQ dH = To State u2 u3 u3 State u2 u3 u3 Reversibility Yer = Kryword OR = Year: Since See Urril 1999 Dupley Option SWTRY UPFOTEIN UPCOTEIN UPCOTEIN UPCOTEIN UPDB_milder SWTATE SINCE SECTION UPCOTEIN UPCOTEIN UPDB_milder SWTATE SINCE SECTION UPCOTEIN UPCOTEIN UPCOTEIN UPDB_milder	ownload	Measure III	Absorbance ICD IDSC IFin	rescence INMR IIOthers			
dTmcTmcT       dTm         dTmcTmcT       dtm         dtmcTmcT       dtm         dddddg_thQ       ddd         dthat       0         Keyword       0         C       0         ycar       0         Xeaz       Since         Yeaz       0         Yeaz       0         Yeaz       0         ycar       ycar         Yeaz       Since         Yeaz       Since         Yeaz       Yeaz	ontact us	Method II	Thermal @GdnHCI @Urea @Ot	thers			
ddCiddG_HO         640	opyright	pH	To				
dHidCpidG_HcQ         dH		dTm/Tm/T	Tm 😅 To				
State U2 II 3 II 33 Revenibility Yer = Keyword OR = Year Since 1996 Until 1999 Diploy Option MEC NUMBER UPMD NO MODE, wild UPDE, matter SWTRY UPROTEIN UPC CNUMBER UPMD NO MODE, wild UPDE, matter SWTATATION RECETS. SSA USTATE 1930, H20 (1940, H20		ddG/ddG_HiQ	66G 🛶 🔽 To				
Reversibility     Yes       Kryword     OR       Author     OR       Year     OR       Year     OR       Since     1996       Until     1999       Display Option     #OB_wild       MITRY     UPCNUMBER       WITATION RECET     SSA       GUTATION RECET     SSA		dH/dCp/dG_HzO	dH 🛶 To				
Keyward     OR       Author     OR       Year     Since 1996       Unril 1999       Display Option       SECTION       SECTION       SUTTRY       UPODE       SUTTATION RECETS       SASA       USTATE       SUTATION RECETS		State II	2 🔜 3 🔤 >3				
Author OR  Vest Since 1996 Until 1999 Diploy Option SetTRY UPFOTEIN UECNUMBER UFMD NO SFDB., wild UFDB., mitteet SetUTATION SEECSTR. SASA USTATE SSG, 1/20 Us405, 1/20		Reversibility	'e =				
Year.         Since         Light         Utrill         1899           Display Option         USC NUMBER         UPMD NO         MCDB_wild         UPDB_minited           MOUTATION SECSTR.         MSA         USTATE         MSG J2O         US40 J2O		Keyword		OR 🛥			
Duplay Option WENTRY UPROTEIN UE CNUMBER UPMD.NO WODB_wild UPDB_wuldum WITATION WSECSTR. WASA USTATE WS3,H2O US433,H2O		Author		OR 🛥			
BENTRY UFROTEIN UE CNUMBER UFMD NO BODE, wild UFDE, uurataat BENUTATION BEECSTR. BASA USTATE BES JA20 US43 JA20		Year Si	ce 1996 Until 1999				
BENTRY UFROTEIN UE CNUMBER UFMD NO BODE, wild UFDE, uurataat BENUTATION BEECSTR. BASA USTATE BES JA20 US43 JA20		Display Option					
			TEIN E.C.NUMBER	IPMD.NO MPDB	wild up	B_mutant	
udd uddd w7/Tm uddTm uddH upm		MUTATION SEC	STR. BASA	USTATE MOG_	H2O 000	G_H20	
		DdG UddG	<b>g</b> T/Tm	ijjdTm ijjdH	(Im		

So, if you used all these things 96 and 96 and you will get the complete data right.

(Refer Slide Time: 23:25)

C O www.abren.ne	18m	liner.	(#1/1H)	105		(UNI)			1	
	.Cm	liidCp	i∰pH	U	MEASURE	METH	10D	Reversibility		
	ACTIVITY		Km ACTIVITY	_Kcat 🔛	ACTIVITY_B	d IKEY_	WORDS	REFERENCE		
	AUTHOR	UREMARKS								
	Sorting By	year -	Accessibilit	y	mut_res		OF	F 🛥		
	Display hit lis	from No. 1	to No. 100				Start	Clear		
	D in pray ray ray	HOM NO.	10110. 101	<u> </u>			Side	older .		
					Here is the	result of the	example:			
	Entry PDB_	wild Mutation S	ec.Str. ASA(%)	dG_H	O T/Tm pH	Method	Reversib	,		
	5716 IRN1	D.76 A . S	2.36	NULL	15.00 7.0	) Urea	YES	BIOCHEMISTRY 38, 13379-13384 (1999).		
	5720, 1RN1	D.76 A . S	2.36	NULL	35.60 7.0	) Thermal	YES	BIOCHEMISTRY 38.		
								13379-13384 (1999) BIOCHEMISTRY 38.		
	5714 IRN1	<u>D.76 N</u> 9	2.36	NULL	15.00 7.0	) Urea	YES	13379-13384 (1999)		
	5718 IRN1	D.76.N S	2.36	NULL	37.00 7.	) Thermal	YES	BIOCHEMISTRY 38, 13379-13384 (1999)		
	5726. 1RN1	D.76 N S	2.36	2.58	25.00 7.0	lless	YES	BIOCHEMISTRY 38.		
	STAD. HEAL	<u>0.19.00</u> a	2.30	2.50	25.00 1.0	/ Orea	TES	13379-13384 (1999)		
	5727. 1RN1	D.76 N S	2.36	3.53	20.00 7.0	) Urea	YES	BIOCHEMISTRY 38, 13379-13384 (1999)		
	5728. IRN1	D.76 N	2.36	4.25	15.00 7.0	) I Irea	YES	BIOCHEMISTRY 38.		
	STAR. IDANI	12.19.14 ·	2.30	4.25	12.00 7.0	/ Urea	160	13379-13384 (1999)		
	5729. IRNI	D.76 N S	2.36	5.00	10.00 7.0	) Urea	YES	BIOCHEMISTRY 38, 13379-13384 (1999)		
	5730, 1RN1	D.76 N S	2.36	5.55	5.00 7.0		YES	BIOCHEMISTRY 38.		

So, you have various options in ProTherm and you can use the multiple combination of different options to get your information fine. So, we use various terms right so, what is the meaning of accessibility and for example, I will put the buried and partially buried and exposed, what is the meaning of exposed.

Student: (Refer Time: 23:45).

Accessibility service is very high it is outside the protein. So, what did they range we use for exposed, we do not know right.

Student: (Refer Time: 23:53).

(Refer Slide Time: 23:53)

X © www.	bren.net/protherm/pp_data_help.html#E5	t
Accessible Surface Area	Jaccossible surfaces area (ASA) of the residue in wild type (computed ming the program ASC, Analytical Surface Calculation) regressed in mit of A**2 Accessibility (%) in defined as the ASA of the residue at the matation site (X) in a parent proton, computed with ASC divided by the ASA of the residue in an exheded trippedide AiSA-ASA of conference on the exheded trippedide and ASC-ASA of accessibility and the ASA of the residue in an exheded trippedide and ASC-ASA of accessibility and the ASA of accessibility and the ASA of accessibility and the ASA of A	ol.
Measure	The experiments performed to measure the thermodynamic parameters (Fluorescence spectroscopy, Circular Dichroism, Differential Scanning Calorimetry, Absorban NMR, etc.) Keywords: FI, CD, DSC, Abs, NMR, others	ce.
Method	Experimental method of denaturation (keywords: Thermal, Urea, GdnHCI etc.). (activity: 50% relative remaining activity of the enzyme after the heat treatment)	
pH	the pH value.	
m	Stope of dG on denaturant concentration (dG vs urea/GdnHCI; dG = dG(H2O) - m[Denaturant]) Unit is kcal/mol/M.	1
Cm	Concentration of denaturant at which 50% of the protein is unfolded [M]	
dTm	Tm(mstant) - Tm(wild) [degree Celsius]	7
Т	In the case of denaturant denaturation methods, T is the temperature used in the experiment. In the case of thermal denaturation methods, T is the temperature at which thermodynamic quantities used as unfolding free energy (JG), unfolding free-energy change due to mutation (LJGG) and sometimes unfolding enthalpy change (LM) were calculated (Lggere Celsin)	
Tm	Midpoint temperature of the thermal unfolding for thermal denaturation methods [degree Celsius]	5
dG	<ol> <li>Free energy of unfolding at a certain concentration of denaturant in the case of denaturant denaturation methods.</li> <li>Free energy of unfolding obtained for extrapolation temperature T using dCp in the case of thermal denaturation method [kcal mol]</li> </ol>	
ddG	66(mutaut) - 66(wild) [kcal mol] Free energy of unfolding obtained with Schellman equation (ddG = dTm.dS) in the case of thermal denaturation method [kcal mol]	
ddG_H2O	dG_H2O(mutant) - dG_H2O(wild) [kcal'mol]	
dH	Enthalpy change of denaturation [kcal'mol]	
dHvH	van't Hoff enthalpy change of denaturation (enthalpy obtained from the temperature dependence of the denaturation equilibrium constant)	Ĩ
dHcal	Calorimetric enthalpy change of denaturation (enthalpy measured by calorimetry)	
latting for www.abreninet	cal mol K	1

This will tell you what are the conditions, we used for this ProTherm, because we can use different cutoff values for the buried or partially exposed. In this case we use less than 20 percent buried that is very wide, and 20 to 50 as partially buried and more than will be exposed.

If you want to restrict this 20 percent as 5 percent what will you do, can we get it get the data because here the buried we define as to 0 to 20 percent. If you are interested to get 0 to 5 can we get the get it that you get the data.

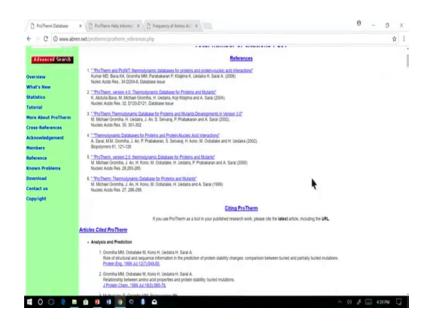
Student: Yeah.

Yes right. So, here you can define instead of buried, you have to give the value 0 to 5, now 0 to whatever you like. So, then you are also get the data right.

# (Refer Slide Time: 24:39)

C O your at	bren net/orotherm/op data help.html#E.5	Ŷ	
o o mina	a name province province and an and a second s	~	
	Glossary of terms		
	azasa) ar come		
Terms	Explanations		
No	Entry number. This option can be used for getting data from a particular entry (Eg. 3012) or a range of entries (Eg. 10107-10365) with without other search con	ditions	î
Protein Name	Name of the protein. Multiple words can be entered with spaces. Wild card can also be used: * for a string of characters and ? for a character. If * and ? were to as real characters, place "* (backslash) before them.	be used	i
E.C.No.	Enzyme Commission number		ľ
PMD No.	Protein Mutant Database accession number		ĺ
PDB_wild	Protein Data Bank code for the native protein		í
PDB_mutant	Protein Data Bank code for the mutant protein		í
STATE	Number of transition states		Î
Mutation	Details bear the matrices residue in wild type, residue number and readue in mattar protein (e.g. A 121 G). In the case of insertion or detainent mattaria, all mented deleted residues appear along with the preceding residue that corresponds to the residue manber at which the matriato accurs (for example, A 378 AV) that the row name osciel residues "" and "L" are unserted at 378th position where the residue "At" is present in the wild type, and it is represented conversely for deferion, viz, AVL 378 A). The mattation residue number is given as in the reference. In some cases, the residue number many not match with PIR and PDB sequences. In such cases, the re- miners corresponding to PIRs and PDB sequences are also given in the parentesies.	r the	
Secondary Structure	Secondary Structural Information for the mutation site (Helix, Strand, Turn and Coil; we obtain the data from PDB) In search result : H = Helix, S = Strand, T = Turn, C = Coil.		ĺ
Accessible Surface Area	Accessible surface area (ASA) of the residue in wild type (computed using the program ASC, Analytical Surface Calculation) expressed in units of A**2 Acces *b) in defined as the ASA of the residue at the mutation site (X) in its parent protein, computed with ASC divided by the ASA of the residue in an extended trip Abs/AAL confidentiation. The extended bits the ASA was calculated using ECPEP*2 algorithm with dibeting large prove polyconiate and So (it Prog. Biophys. 3) 1099) 159, 237-264 and the van der Walls radius of dooms from Over et al. (Proc. Natl. Acad. Sci. USA, (1987) 48, 1066-1090). The values erable 102, Apo- (1997) 40, 450, 1177, Phee 2007, (Grov, T37). This 159, 116-150, 12-1505, 71, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161, 12-161,	eptide Iol. Bio 144.1; Thr-138.	1

So, here the help H, you can get the information for all the technical terms right, we are used in the ProTherm database. So, you see all the technical terms and, they all the terms you have the a complete information.


(Refer Slide Time: 24:48)

Activity_Kd	Dissociation constant [mM]
Author	Name of the authors. Multiple words can be entered with spaces. Wild card can also be used: * for a string of characters and ? for a character. If * and ? were to be use as real characters, place *? (backslash) before them. These can be combined with AND and OR logical operations to form more complex patterns.
Year	Year of publication.
Reference	Complete reference of the article with a link to NCBI database with PMID
Remarks	Some specific comments
Sorting By	Sorting option. Check the items to sort the hit list.
Source	Source of the protein
Molecular weight	Molecular weights were calculated as follows: The amino acid sequence corresponding to a protein was taken from PIR database, and lender (signal) regions were removed. Then, the molecular weights were calculated according to the namio acid sequence. Amino and carboxy terminals were taken into account. Any mutations to the namio acid sequence were taken in account. However, our structures and difficultants were taken into account.
Length	Total number of Amino Acid residues in the protein
No of molecule	Number of molecule (e.g. 1 = Monomer, 2 = Dimer, etc.)
Buffer_name	Name of the buffer used in the experiment
Buffer_conc	Concentration of the buffer
lon_name	Name of the added ion
lon_conc	Concentration of the ion
ADDITIVES	Details about the additives (e.g. glycerol)
Protein_conc	Concentration of the protein when the experiment has been performed
PIR_ID	Protein Information Resources Codes
SWISS_PROT ID	Protein Sequence Knowledge Base Codes
RELATED_ENTRIE	SList of all the entries that contain other data reported in the same reference.

Now, in this case you can understand more about the terms used in the ProTherm database right.

So, what are the applications of ProTherm. So, for what we use ProTherm there is no recent updates but if you go to the references ok, reference if you see.

### (Refer Slide Time: 25:15)

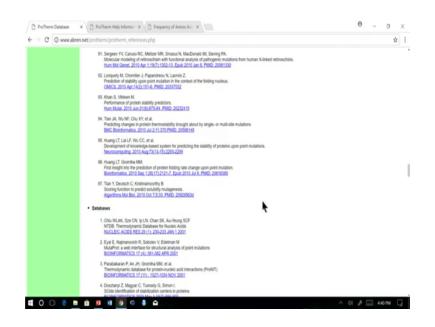


So, the various application these are the database papers.

(Refer Slide Time: 25:19)



And we can do the analysis and prediction, you can collect the data and, we can analyze the stability data, obtained from the denaturant or thermal denaturation, with the respect to accessibility surface area or the pH or the external conditions, or the secondary structures. And we can see how the stability varies, what happened the stability in different secondary structure and you can do the analysis.


# (Refer Slide Time: 25:41)

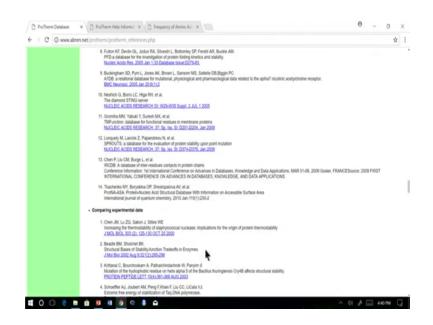


What we do the analysis then you can also predict, we can develop several models regression the models, or the machine learning techniques right, or the knowledge based predictions, or the decision tree models you can use various models to predict the stability upon mutation.

Then you can also get some a verify with the experimental data for example, if there are some prediction methods they predict some data, these are the various citation currently we are not updated is ok.

(Refer Slide Time: 26:06)




So, then it is used to cross link with our databases because, ProTherm is linked with the PDB and also various other databases, we have more than 25000 data. So, these are the various DDB and the pronate slide P GDB.



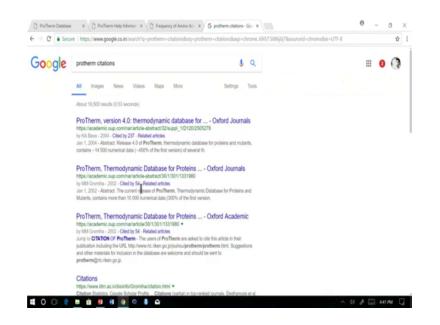
(Refer Slide Time: 26:24)

All these databases they linked these ProTherm database. So, we have the structural information and, we can related it with the thermodynamics. So, we can see to understand the structure stability information with the function and diseases. In this case this database is a very useful. So, there are various databases.

(Refer Slide Time: 26:45)

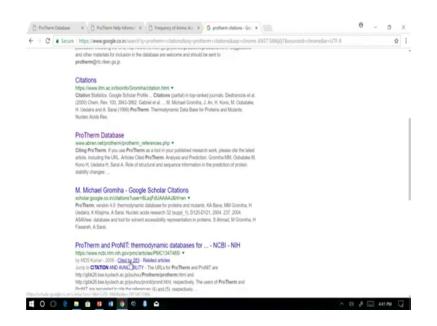


Then any methods so, worked out they can predict, or they can finally, explain some reasons for any mutations, we can verify with the datas available in the ProTherm or not, this experiment only available experimental database. So, we can compare whether this is comparable with the other mutations in the ProTherm database or not right this is that, they use.


Now, there are many many citations, then also cited and very general applications and why are we can receive for the by technological applications, with increase in stability. So, right they are used the ProTherm database. So, there is several review article also they all sent the books.

(Refer Slide Time: 27:21)

oTherm Database	x D Polhem Help Informe: X D Prequency of Anino Ac. X	_
C O www.ab	bren.net/protherm/protherm_references.php	
	13. Growtha MM Prediction of protein stability upon point instations BIOCHERGLE, BOOCETT, BRANKLAFTICHE, Valum: 35 Pages. 1569-1573 Print Part & Put de Publisher, DEC 2007	
	14. Zelówich KB, Shakhovich El Understandrog prelem evalutor: From protein physics to Daniellan adection ANNAL, REVERT OF Physical Configuration, Configuration, 2000	
	15. Otem YMC Diary F Ne HW H al. Potem hading: Them and now ARCHIVES Co. BBOOHEMISTRY: AND BIOPHYSICS.400 (1).4-59, Jan 2008	
	<ol> <li>Tunckog N, Karo K, Kaskillo G, et al. A survey of available tools and were between for landaysis of protein-protein interactions and interfaces Intel Environ. M IEE/INCOMMENT. J. 101, 217-222. May 2009</li> </ol>	
	<ol> <li>Countre MM Revisiting Therene Hydrophotic Effect¹: Applicable Only to Coll Mutations at the Surface BIOPDX:MERS. 31:12, 511-589. Jul 2009</li> </ol>	
	+ Books	
	Pleti, W. Protein stability and toticing, Supplement 1: A collection of thermodynamic data Springer-Versig, New York, 2001	
	<ol> <li>Ook T and Sheritox, S.</li> <li>Molecular life of proteins. Folding and stability.</li> <li>"Recent Research Developments in Protein Folding, Stability and Design" (Ed. M. Michael Gromitia and S. Serlara); pp 243-264 Research Eignpool, Trivandrum, Hoda (2002).</li> </ol>	
	<ol> <li>Kreten, WG and Bourne, PE. The Protein Mutari Resource: Visual and Statistical Analysis of Mutations with Implications for Homology Modeling. In "Currents in Computational Molecular Biology 2004" (Eds. A. Granada and PE. Bourne) pp-68-40 (2004).</li> </ol>	
	Hame   ProTherm   Etshill	
	Biomolecules Gallery	


So, they also cite the ProTherm. So, this will tell the how the ProTherm is a important in this case.

### (Refer Slide Time: 27:30)



So, if you search the ProTherm citations, you will get yeah this is the ProTherm version 4 resided with 237 times, these 54 this is 54 right there are many citations right ok.

(Refer Slide Time: 27:50)




This is 283 citations to some citations, it totally in a if you add up all these 4 5 papers right.

So, we get more than 1000 citations, because earlier years nucleic acid research they published the updates of this in databases right not currently earlier days. So, we have various updates, we have 4 or 5 updates. So, there is a recent we have the different

updates, but each version we introduce new features as well as a increase the number of data and so, this is the reason why it case.

So, it is only a used resource for protein stability.

(Refer Slide Time: 28:28)



So, it is a good database and useful resource right for the protein researches, these are other databases available in this bank. So, related with the ProTherm as well as other things. So, you can use the ProTherm database and, get the information and have fun with this data and try to explore right more details and more insides about protein stability and relate with the functions, or the diseases and that right.

Thank you.