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Welcome!  

In the last class we had completed whatever we wanted to cover in module 4. What we will do in 

this class is since we have covered quite a few new concepts, let us look at them one more time, 

the concepts with some detail not too much detail. 
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This module, module 4 is on thermodynamics of solutions. Before we got into module 4 we 

looked at how a typical class is, in terms of worthwhile achievements the number in a class versus 

worthwhile achievements.  Then, I said I typically teach to people here, and the people here will 

need some help.  Probably, they can discuss with me later.  The people here are the ones who are 

expected to contribute a lot more to the area, the course, and so on and so forth. 



(Refer Slide Time: 01:19) 

 

So, for them … let me remind you once again … everybody can do; please try it out.  You do not 

really know where you are in this class till you evaluate yourself, the ease with which you can do 

this particular exercise. It is actually quite a tough exercise.  This is called the choose focus 

analyze exercise. Students need to choose a problem of relevance to the bio-industry or any 

human endeavor and analyze it using the thermodynamic principles taught in class. 

This is an open ended exercise, which has been designed to improve the skills of choice, focus 

and analysis in students.  A concise report in the format that you think would best communicate 

your work – this also deliberately done this way – would be evaluated on the following criteria, 

the criteria are as follows. 

Originality in approach would carry 15 percent, focus level 15 percent, depth of analysis 20 

percent, quantum of work 20 percent, original contribution 20 percent ,which means this should 

not exists earlier – that kind of a thing, and presentation, which is mainly communication – 

communication carries 8 percent and the professional appearance of the report carries 2 percent. 

So if you can do this for whatever time you want, and you want to get back and discuss – that is 

also fine. 
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Now … we started looking at the thermodynamics of solutions.  We said that in the previous 

module we had looked at pure substances, where as many systems of biological interests consist 

of many substances. Sometimes we come across, rarely, a pure substance.  But, we need to 

understand the formulations for a pure substance well, before we could appreciate that for 

solutions.  That is the reason why we spent time on the pure substance, first. 

Many systems of biological interest consist of many components and when the components are 

mixed, there could be changes in, for example, volume or enthalpy.  What we said was: let us say 

that there are 2 components; each one has its own volume –   volume is easy to imagine – each 

one has its own volume.  When we mix them together in a certain proportion, the final volume 

may not be the weighted average in terms of the mole fractions of the initial volumes. That is the 

nature of the substance itself.   That we have recognized here.  Therefore, we need to treat 

solutions differently. 

Therefore, the thermodynamic properties, not just the volume, all the thermodynamic properties 

of the mixture or solution may not be the same as the weighted average of the relevant properties 

of its components.   

If that indeed happens, it becomes an ideal solution. If the thermodynamic property of the solution 

is indeed equal to the weighted average of the components then it is an ideal solution, otherwise 

it is a non ideal solution. We will predominantly look at non ideal solutions and ways to handle 

them. 
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We said that we will look at some concepts for multi component systems in this particular 

module, and we recalled what an ideal gas was, in terms of chemical potential, …  

𝜇𝜇 =  𝜇𝜇0 +  𝑅𝑅 𝑇𝑇 𝑙𝑙𝑙𝑙 𝑃𝑃  

For a real gas the P gets replaced with a f; 

𝜇𝜇 =  𝜇𝜇0 +  𝑅𝑅 𝑇𝑇 𝑙𝑙𝑙𝑙 𝑓𝑓   𝑎𝑎𝑙𝑙𝑎𝑎    𝑓𝑓
𝑃𝑃

 
→ 1   𝑎𝑎𝑎𝑎 𝑃𝑃 

 
→  0  

So, this is for ideal gas and this is for real gas pure component.  Now, what happens if we mix 

them together?  Before that, we said, we will look at a concept of perfect gas mixtures and 

imperfect gas mixtures, which are essentially concepts which we will invoke at a later stage. It is 

just being presented here for completeness; it is nice to have all these formulations at one place. 
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The perfect gas mixture is one for which the chemical potential of the component i, for each 

component is expressed as  

𝜇𝜇𝑖𝑖 =  𝜇𝜇𝑖𝑖0 +  𝑅𝑅 𝑇𝑇 𝑙𝑙𝑙𝑙 𝑝𝑝𝑖𝑖  

𝜇𝜇𝑖𝑖0 is a function of temperature alone, as earlier, and pi is the partial pressure as we mentioned 

… this is a perfect mixture of gases. 
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For an imperfect mixture of gases, we said,  



𝜇𝜇𝑖𝑖 =  𝜇𝜇𝑖𝑖0 +  𝑅𝑅 𝑇𝑇 𝑙𝑙𝑙𝑙 𝑓𝑓𝑖𝑖           𝑓𝑓
�
𝑖𝑖
𝑝𝑝𝑖𝑖

 
→ 1   𝑎𝑎𝑎𝑎 𝑃𝑃 

 
→  0  

mu i naught, is still a function of temperature. These were the two hypothetical substances, perfect 

gas mixtures and imperfect gas mixtures which are defined this way. 
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�̂�𝑓𝑖𝑖
𝑝𝑝𝑖𝑖

  ≡  ∅𝑖𝑖   the fugacity coefficient, phi i. Fugacity coefficient of the component in the solution 

as distinct from the fugacity coefficient of a pure component, which was defined as f by total 

pressure P. 

Therefore, you could write for an imperfect gas mixture, in terms of the fugacity coefficient,  

𝜇𝜇𝑖𝑖 =  𝜇𝜇𝑖𝑖0 +  𝑅𝑅 𝑇𝑇 𝑙𝑙𝑙𝑙 ∅𝑖𝑖𝑝𝑝𝑖𝑖   = 𝜇𝜇𝑖𝑖0  +  𝑅𝑅 𝑇𝑇 𝑙𝑙𝑙𝑙 ∅𝑖𝑖 𝑃𝑃𝑃𝑃𝑖𝑖  

This is all for perfect and imperfect gas mixtures. 
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What we would see more of, in this particular module, is an ideal gas solution.  We had an ideal 

gas and non ideal gas.  Now, we are looking at an ideal gas solution and a non ideal gas solution.  

We said with this formulation, it is easy to extend them to either liquid or solid solutions also, 

mixtures also.  Ideal gas solution is one for which the following relationship holds for every 

single component,  

𝜇𝜇𝑖𝑖 =  𝜇𝜇𝑖𝑖# +  𝑅𝑅 𝑇𝑇 𝑙𝑙𝑙𝑙 𝑃𝑃𝑖𝑖  

yi is the mole fraction of the component in the ideal gas solution.  𝜇𝜇𝑖𝑖# is a function of both the 

temperature and pressure. But, not necessarily equal to 𝜇𝜇𝑖𝑖0 +  𝑅𝑅 𝑇𝑇 𝑙𝑙𝑙𝑙 𝑃𝑃. 
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The ideal solution of liquids and solids can also be expressed in the same way:  

𝜇𝜇𝑖𝑖 =  𝜇𝜇𝑖𝑖# +  𝑅𝑅 𝑇𝑇 𝑙𝑙𝑙𝑙 𝑥𝑥𝑖𝑖  

where x i is a mole fraction of the component i in the ideal solution of a liquid or a solid.  The 

equivalent expressions in terms of the fugacity coefficients were also given. Now, the non ideality 

is brought about either by a fugacity coefficient for a gas mixture, or an activity coefficient for a 

liquid or a solid mixture/ solution. 

𝜇𝜇𝑖𝑖 =  𝜇𝜇𝑖𝑖# +  𝑅𝑅 𝑇𝑇 𝑙𝑙𝑙𝑙 𝑓𝑓𝑖𝑖  
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So, for a non ideal gas solution  

𝜇𝜇𝑖𝑖 =   𝜇𝜇𝑖𝑖# +   𝑅𝑅 𝑇𝑇 𝑙𝑙𝑙𝑙 ∅𝑖𝑖𝑃𝑃𝑖𝑖  

For a non ideal liquid or solid solution, it was  

𝜇𝜇𝑖𝑖 =   𝜇𝜇𝑖𝑖# +   𝑅𝑅 𝑇𝑇 𝑙𝑙𝑙𝑙 𝛾𝛾𝑖𝑖𝑥𝑥𝑖𝑖   𝑎𝑎𝑙𝑙𝑎𝑎 𝛾𝛾𝑖𝑖
 
→ 1 𝑎𝑎𝑎𝑎  𝑥𝑥𝑖𝑖

 
→ 1  

This, of course, was expressed in terms of fugacity, and so on for equivalent expressions; gamma 

i is the activity coefficient.  Note that gamma i is a function of temperature, pressure, and 

composition, whereas mu i hash was only a function of temperature and pressure. 
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And we said that definition so far for a non ideal liquid or a solid solution works well for many 

solutions. Let us concentrate on liquid solutions – works well for many liquid solutions.  But, it 

does not work so well when one of the components is either a gas or a solid at the temperature 

and pressure of interest of the solution. For example, … many solutions of biological interest are 

of that category. 

For example, the solution of glucose, if glucose is in water let us say, then it is going to be a 

liquid at a certain mole fraction of glucose. But, if you increase the mole fraction of glucose to 1, 

it is going to be pure glucose, which is going to be a solid at the temperature and pressure of the 

solution .Therefore, that formulation will not work.  A similar example was that of oxygen.  

Oxygen in water is a liquid at the temperature and pressure of interest for growing cells. Whereas, 

oxygen itself, is a gas. So, if you increase the mole fraction of oxygen in the solution to 1 then 

the phase changes, it becomes a gas phase at, let us say at higher mole fractions, definitely at a 

mole fraction of 1. And therefore, we need to have a different formulation to be able to handle 

that.  The same formulation that we presented will not be able to handle that. 
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And, we did that by noticing that at the extremes, that is when the mole fraction either tends to 0 

or 1, the behavior is ideal .We had used that fact, and then we had come up with a separate 

expression for the solvent and a separate expression for the solute; both need to be used together 

in the model for chemical potential.  The solvent is indicated by the subscript o and the solute is 

indicated by the subscript i. 
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For example,  

 



  𝜇𝜇𝑜𝑜 =  𝜇𝜇𝑜𝑜# +  𝑅𝑅 𝑇𝑇 𝑙𝑙𝑙𝑙 𝛾𝛾𝑜𝑜𝑥𝑥𝑜𝑜        𝑎𝑎𝑙𝑙𝑎𝑎 𝛾𝛾𝑜𝑜
 
→ 1 𝑎𝑎𝑎𝑎  𝑥𝑥𝑜𝑜

 
→ 1  

for the solvent.  And, for the solute,  

  𝜇𝜇𝑖𝑖 =  𝜇𝜇𝑖𝑖# +  𝑅𝑅 𝑇𝑇 𝑙𝑙𝑙𝑙 𝛾𝛾𝑖𝑖𝑥𝑥𝑖𝑖        𝑎𝑎𝑙𝑙𝑎𝑎 𝛾𝛾𝑖𝑖
 
→ 1 𝑎𝑎𝑎𝑎  𝑥𝑥𝑖𝑖

 
→ 0  

Here this is for the solute.  Both these put together as equation 4.9.  

So these are the various models for the chemical potential for the various kinds of solutions that 

we have seen from the ideal to the real; and, we did make a difference between the gas and liquid 

& solid. 
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Now by considering the ideal solution and manipulating the expression, 

𝜇𝜇𝑖𝑖 − 𝜇𝜇𝑖𝑖0 =  𝑅𝑅 𝑇𝑇 𝑙𝑙𝑙𝑙 𝑓𝑓𝑖𝑖 

we came up with the expression: 

𝜇𝜇𝑖𝑖# −  𝜇𝜇𝑖𝑖0 =   𝑅𝑅 𝑇𝑇 𝑙𝑙𝑙𝑙 �̂�𝑓𝑖𝑖
𝑦𝑦𝑖𝑖

  

. 
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This argument was important there:  In  

𝜇𝜇𝑖𝑖# −  𝜇𝜇𝑖𝑖0 =   𝑅𝑅 𝑇𝑇 𝑙𝑙𝑙𝑙 �̂�𝑓𝑖𝑖
𝑦𝑦𝑖𝑖

  

we said that the left hand side is independent of composition. Therefore, the right hand side 

should also be independent of composition. But, you have a term for the composition yi here.  

Therefore, the only way by which the right hand side will be independent of composition is if the 

ratio �̂�𝑓𝑖𝑖
𝑦𝑦𝑖𝑖

  remains a constant when yi is changed. 

We had used that argument to get to this expression: fi hat by y i must be equal to fi by 1. fi hat 

is the fugacity of the component in the solution, and fi is the fugacity of the pure component when 

yi equals 1. Therefore, in such a case,  

𝑓𝑓𝑖𝑖 = 𝑃𝑃𝑖𝑖𝑓𝑓𝑖𝑖   

It is powerful because we could get an estimate of fi hat – some sort of a hypothetical quantity – 

well, I should not say hypothetical quantity but, not so easy to determine quantity – as a function 

of yi, and the fugacity of the pure component. Therefore, there is a way of estimating fi hat by 

this expression. 
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This was actually called the Lewis and Randall rule.  This, of course, is valid only for an ideal 

solution. In an ideal gas solution the fugacity of each component is equal to the mole fraction 

times the fugacity, which it would exhibit as a pure gas at the same temperature and total pressure.  

And, this we have already seen. 
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Then, we went into something called partial molar properties which would give us a way of 

handling our initial problem. We said that in terms of volumes – we started in terms of volumes 

– the volume of the final solution may not be equal to the weighted average of the volumes of the 



components.  If we need a formulation to express it that way, that would be in terms of partial 

molar properties. 
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And, we had defined the partial molar property for any property as  

𝑀𝑀�𝑖𝑖𝑇𝑇 ≡   �𝜕𝜕𝑀𝑀
𝑇𝑇

𝜕𝜕𝑛𝑛𝑖𝑖
�
𝑇𝑇,  𝑃𝑃,  𝑛𝑛𝑗𝑗

  

This you could write for any of the extensive properties UT, ST, HT, AT, GT, or VT.  And, of 

course, it is quite obvious that the partial molar property may not be the same as the pure state 

property at the same temperature and total pressure. 

The total property, extensive property, can be computed from the partial molar properties as the 

sum over n I, the mole numbers, times the partial molar property of that component. You sum 

them over all the components then you get the total property.  To be able to express it this way, 

was the need to define a partial molar property at all. 
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And, then we wrote the complete set of … the expressions for getting the total properties in terms 

of the partial molar properties. This is total volume, total internal energy, total entropy, total 

enthalpy, total Helmholtz free energy and total Gibbs free energy.  All these in terms of the partial 

molar properties was written down. 
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And, then we went into arguments … with using the expansion of the total derivative  

𝑎𝑎𝑀𝑀𝑇𝑇 =  �𝜕𝜕𝑀𝑀
𝑇𝑇

𝜕𝜕𝑇𝑇
�
𝑃𝑃,  𝑙𝑙𝑖𝑖

 𝑎𝑎𝑇𝑇 +  �𝜕𝜕𝑀𝑀
𝑇𝑇

𝜕𝜕𝑃𝑃
�
𝑇𝑇,𝑙𝑙𝑖𝑖

 𝑎𝑎𝑃𝑃 +   ∑ �𝜕𝜕𝑀𝑀
𝑇𝑇

𝜕𝜕𝑙𝑙𝑖𝑖
�
𝑇𝑇,  𝑃𝑃,  𝑙𝑙𝑗𝑗

 𝑎𝑎𝑙𝑙𝑖𝑖
 
    



𝑎𝑎𝑀𝑀𝑇𝑇 =  �𝜕𝜕𝑀𝑀
𝑇𝑇

𝜕𝜕𝑇𝑇
�
𝑃𝑃,  𝑙𝑙𝑖𝑖

 𝑎𝑎𝑇𝑇 +  �𝜕𝜕𝑀𝑀
𝑇𝑇

𝜕𝜕𝑃𝑃
�
𝑇𝑇,𝑙𝑙𝑖𝑖

 𝑎𝑎𝑃𝑃 +   ∑ 𝑀𝑀�𝑖𝑖
𝑇𝑇 𝑎𝑎𝑙𝑙𝑖𝑖

 
    

Therefore, you get this in terms of temperature, pressure and the number of moles variation. 
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And we got this particular expression, which is an useful expression to have:  

∑𝑙𝑙𝑖𝑖 𝑎𝑎𝑀𝑀�𝑖𝑖𝑇𝑇 = 0  

If you divide this expression equation 4.17 by the total number of moles we get  

∑𝑥𝑥𝑖𝑖 𝑎𝑎𝑀𝑀�𝑖𝑖𝑇𝑇 = 0  

sum over x i d M i T hash equals 0.  This is a very useful expression to have; this is equation 

4.18. 



(Refer Slide Time: 18:25) 

 

And, then we looked at how to estimate the partial molar properties from experimental data. The 

experiments that we are interested in are called mixing experiments, where the initial values are 

measured and the total value upon mixing is measured. 
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For example, if we take volume, since it is easy to imagine, if V1 and V2 are the molar volumes 

of the pure components 1 and 2, and 𝑉𝑉�1𝑇𝑇 and 𝑉𝑉�2𝑇𝑇 are the partial molar volumes in a solution 

containing n 1 moles of component 1 and n 2 moles of component 2. 
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Then the difference in volume upon mixing, which is what actually is measured and plotted, is 

�𝑙𝑙1𝑉𝑉�1𝑇𝑇 +   𝑙𝑙2𝑉𝑉�2𝑇𝑇� – this is the volume of the solution after, and this is the volume before.  That 

is the volume of the pure components n1 V1 … the volume of the pure component 1, n2 V2 … 

the volume of the pure component 2. Note these are molar quantities.  Therefore, when you 

multiply it by the mole numbers you get the total quantity. So after mixing volume, minus volume 

before mixing that is delta V T, which can be transposed into a convenient form to get  

∆𝑉𝑉 =  �1 −  𝑥𝑥2��𝑉𝑉�1𝑇𝑇 −  𝑉𝑉1� +𝑥𝑥2�𝑉𝑉�2𝑇𝑇 −  𝑉𝑉2�   
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And, this is what is plotted, delta V, the volume change upon mixing, as a function of the mole 

fraction x 2, if it is plotted, we get a curve something like A G B here.  If we are interested in the 

partial molar volumes at the point E, we said, we draw a tangent to the curve at the point E.  We 

actually proved this: that the intercept of the tangent on this axis, when x2 equals 0, or the distance 

AC gives the partial molar volume 1, (𝑉𝑉�1𝑇𝑇), and the intercept of the tangent on the line on the 

ordinate of x 2 being equal to 1 or the distance DB gives us the partial molar volume of the second 

component (𝑉𝑉�2𝑇𝑇). 
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And we had gone through expressing equation 4.20 in terms of the derivative and so on. 
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We had formulated it in such a way that some of the quantities that we are interested in would 

correspond to distances on the delta V versus x 2 diagram, and therefore, we went about proving 

that indeed or deriving that you can indeed use the distances on the delta V versus x2 graph to 

find out (𝑉𝑉�1𝑇𝑇)and (𝑉𝑉�2𝑇𝑇). 
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Actually what you are finding out is �𝑉𝑉�1𝑇𝑇 −  𝑉𝑉1� – that is the intercept, not the (𝑉𝑉�1𝑇𝑇) itself.  You 

know, this distance AC is actually �𝑉𝑉�1𝑇𝑇 −  𝑉𝑉1�, and this distance is �𝑉𝑉�2𝑇𝑇 −  𝑉𝑉2�. 

And, since we know the molar volumes of the pure components, 𝑉𝑉�1𝑇𝑇 can be computed from this 

distance, and 𝑉𝑉�2𝑇𝑇 can be computed from this distance.  Please make that correction. This is the 

way we went about deriving that particular expression.  Please look through the derivation one 

more time; if you have any difficulties … we can always discuss. 
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This is the way we showed you, know there is some equality of distances AE is the same as CF 

and therefore, we could cancel the two.  Therefore, �𝑉𝑉�1𝑇𝑇 −  𝑉𝑉1� at the point E became GE minus 

GF, … which is FE. FE is nothing but CA, which is the intercept of the tangent on the x2 equals 

0 line. Then we worked out an example by which we could find out the partial molar volumes for 

a case of relevant interest. 
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Then, we started looking at the relationship between excess properties and activity coefficient.  

We first saw what an excess property was. Excess property is nothing but, the difference between 

the actual property and the ideal property, and we said excess properties are defined the same 

way, and play a pretty much the same role as the residual properties for pure components; residual 

properties – we had seen in module 3. You can go back and refer to that also.  In other words M 

R the residual property is defined as M the actual property minus M ideal gas. 

𝑀𝑀𝑅𝑅 ≡   𝑀𝑀 −  𝑀𝑀𝑖𝑖𝑖𝑖  
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An excess property of a solution is the amount by which its relevant thermodynamic property 

exceeds that of the hypothetical ideal solution of the same composition.  We had given this  

𝑀𝑀𝑇𝑇,  𝐸𝐸 ≡   𝑀𝑀 −  𝑀𝑀𝑇𝑇, 𝑖𝑖𝑖𝑖  
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Then, we started looking at one of the excess properties, which is the excess Gibbs free energy. 

We had a very specific objective in mind, which was to develop an estimate for the activity 

coefficient using the excess Gibbs free energy.  Then, we said the total Gibbs free energy  

𝐺𝐺𝑇𝑇 =  ∑𝑙𝑙𝑖𝑖𝜇𝜇𝑖𝑖  
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And, then we went through the difference between the total and the ideal that gives us the excess, 

which will turn out to be only this term on the right hand side,  

𝐺𝐺𝑇𝑇,𝐸𝐸 =  𝑅𝑅 𝑇𝑇 ∑𝑙𝑙𝑖𝑖 𝑙𝑙𝑙𝑙 𝛾𝛾𝑖𝑖  
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Therefore, dGTE, the derivative the total a total differential of GTE, d GTE, by chain rule would 

turn out to be  



𝑎𝑎𝐺𝐺𝑇𝑇,𝐸𝐸 =  𝑅𝑅 𝑇𝑇 �∑𝑙𝑙𝑖𝑖  𝑎𝑎 𝑙𝑙𝑙𝑙 𝛾𝛾𝑖𝑖  +   ∑ 𝑙𝑙𝑙𝑙 𝛾𝛾𝑖𝑖  𝑎𝑎𝑙𝑙𝑖𝑖�  

Then, we went through an interesting derivation, or an interesting proof, where we started from 

a very fundamental Gibbs Duhem equation, and pretty much without any assumptions, we 

actually showed that for any case sum over n i d ln gamma i goes to 0. We had worked that out 

…we had worked that out together, so that it will strengthen some of the ideas in you.  Therefore, 

we were left with  

𝑎𝑎𝐺𝐺𝑇𝑇,𝐸𝐸 =  𝑅𝑅 𝑇𝑇 �∑ 𝑙𝑙𝑙𝑙 𝛾𝛾𝑖𝑖  𝑎𝑎𝑙𝑙𝑖𝑖�  
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This is the process that we went through – a very interesting kind of a derivation. You may want 

to look at it again.  It also shows the level of care, or carefulness that one needs to exhibit while 

doing these kinds of manipulations. 
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And, this is where we brought these two terms in terms of … you know, we had used the 

reciprocity relationships to convert the third and the fourth terms as equivalent to the first and the 

second terms with the opposite signs and therefore, we could get rid of them. 
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And, we were left with just this, which  

∑ 𝑙𝑙𝑖𝑖𝑖𝑖  �∑ �𝜕𝜕𝜇𝜇𝑖𝑖
𝜕𝜕𝑥𝑥𝑘𝑘

�
𝑇𝑇,𝑃𝑃,𝑥𝑥𝑗𝑗

𝑘𝑘  𝑎𝑎 𝑥𝑥𝑘𝑘� = 0  



What would be easier is if we divided throughout by sum over n i then this n i by sum over n i 

would become x i; here it goes to 0 anyway. Therefore, it became  

∑ 𝑥𝑥𝑖𝑖𝑖𝑖  �∑ �𝜕𝜕𝜇𝜇𝑖𝑖
𝜕𝜕𝑥𝑥𝑘𝑘

�
𝑇𝑇,𝑃𝑃,𝑥𝑥𝑗𝑗

𝑘𝑘  𝑎𝑎 𝑥𝑥𝑘𝑘� = 0  

From here we had used the expression for mu i as 𝜇𝜇𝑖𝑖  =  𝜇𝜇𝑖𝑖#  +  𝑅𝑅 𝑇𝑇 𝑙𝑙𝑙𝑙 𝛾𝛾𝑖𝑖𝑥𝑥𝑖𝑖 
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And an interesting formulation … beautiful actually … the way it turns out, you know, these are 

just writing out all the terms. We need to write, all the terms if we need to do it properly. 
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But, for ease we took one term at a time.  Also, we had noticed or noted that mu i hash is a 

function of temperature and pressure alone, and this became handy. When we had taken the 

derivative with respect to composition, such terms would vanish because this is not a function of 

composition, whereas gamma i is a function of temperature, pressure and composition.  

Therefore, all terms would remain there.  
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After going through some more algebra, which we … went through together, we got for the first 

term alone, 𝑥𝑥1 �𝑎𝑎 ln 𝑥𝑥1  +   𝑎𝑎 ln 𝛾𝛾1�. 
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And, if we considered all the terms and combine them appropriately we got  

�𝑥𝑥1 𝑎𝑎 ln 𝑥𝑥1 +  𝑥𝑥2 𝑎𝑎 ln 𝑥𝑥2 + ⋯+  𝑥𝑥𝑝𝑝 𝑎𝑎 ln 𝑥𝑥𝑝𝑝�  

+�𝑥𝑥1 𝑎𝑎 ln 𝛾𝛾1 + 𝑥𝑥2 𝑎𝑎 ln 𝛾𝛾2 + ⋯+  𝑥𝑥𝑝𝑝 𝑎𝑎 ln 𝛾𝛾𝑝𝑝�  =   0  
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Which can be written as  



∑ 𝑥𝑥𝑖𝑖 𝑎𝑎 ln 𝑥𝑥𝑖𝑖𝑖𝑖  +   ∑ 𝑥𝑥𝑖𝑖 𝑎𝑎 𝑙𝑙𝑙𝑙 𝛾𝛾𝑖𝑖𝑖𝑖 = 0  

x i d ln x i is nothing but, each one of these terms is nothing but,  

𝑥𝑥𝑖𝑖 𝑎𝑎 ln 𝑥𝑥𝑖𝑖  =  𝑥𝑥𝑖𝑖 �
1
𝑥𝑥𝑖𝑖

 𝑎𝑎𝑥𝑥𝑖𝑖�  =  𝑎𝑎𝑥𝑥𝑖𝑖  
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And then the sum over all d x i would be  

∑ 𝑎𝑎𝑥𝑥𝑖𝑖𝑖𝑖  = 𝑎𝑎 ∑ 𝑥𝑥𝑖𝑖𝑖𝑖  = 𝑎𝑎(1) = 0  

d of the sum over all the x i s, which would be d of a constant, … which is nothing but 0.  

Therefore, we obtained  

∑𝑥𝑥𝑖𝑖  𝑎𝑎 ln 𝛾𝛾𝑖𝑖  = ∑𝑙𝑙𝑖𝑖  𝑎𝑎 𝑙𝑙𝑙𝑙 𝛾𝛾𝑖𝑖 = 0  

This was our equation 4.30. 
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From here we could … you know, when we went back to the expression for d G E we had those 

two terms.  We got rid of one term.  Therefore, only one term remains here,  

𝑎𝑎𝐺𝐺𝑇𝑇,𝐸𝐸 =  𝑅𝑅 𝑇𝑇 �∑ 𝑙𝑙𝑙𝑙 𝛾𝛾𝑖𝑖  𝑎𝑎𝑙𝑙𝑖𝑖�  

This is what we are left with, in a nice way.  But, what this also tells us is if you take the derivative, 

the partial derivative with respect to a certain n i with temperature, pressure and all other n s 

remaining constant, then that would actually give us ln gamma i.   

�
𝜕𝜕𝐺𝐺

𝑇𝑇,𝐸𝐸

𝑅𝑅 𝑇𝑇

𝜕𝜕𝑛𝑛𝑖𝑖
�
𝑇𝑇,  𝑃𝑃,  𝑛𝑛𝑗𝑗

 =  𝑙𝑙𝑙𝑙 𝛾𝛾𝑖𝑖  

We had used this as the basis, to come up with models or at least to see the models for obtaining 

activity coefficients, if GTE by R T is known as a function of composition. 
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Earlier, we saw some intuitive models. … Before that I should say we started looking only at 

binary systems, the activity coefficients in binary systems, from then onwards. 
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Earlier, we saw some intuitive models by Margules, which gave us  

𝐺𝐺𝐸𝐸

𝑅𝑅𝑇𝑇
 =  �𝐴𝐴21𝑥𝑥1 +  𝐴𝐴12𝑥𝑥2�𝑥𝑥1𝑥𝑥2  
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By following the differentiation with respect to one of the mole numbers and suitable 

recombination … we could convert it this way or we could do it in terms of x1 x2 also; that is 

what we did later but, here we did covert it to n1 and so on. 
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We got expressions for gamma 1 and gamma 2.  For example, in the case of Margules we got  

ln 𝛾𝛾1 = 𝑥𝑥22�𝐴𝐴12 +  2(𝐴𝐴21 −  𝐴𝐴12)𝑥𝑥1�  

ln 𝛾𝛾2  =  𝑥𝑥12�𝐴𝐴21 +  2(𝐴𝐴12 −  𝐴𝐴21)𝑥𝑥2�  



 

Then we looked at what happens at infinite dilution,  

𝑥𝑥1 → 0   𝑜𝑜𝑜𝑜  𝑥𝑥2 → 1,           𝑙𝑙𝑙𝑙 𝛾𝛾1
∞ =  𝐴𝐴12  

𝑥𝑥2 → 0   𝑜𝑜𝑜𝑜  𝑥𝑥1 → 1,           𝑙𝑙𝑙𝑙 𝛾𝛾2
∞ =  𝐴𝐴21  
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We also saw the other models, the Redlich-Kister model which is a very simple  

𝐺𝐺𝐸𝐸

𝑅𝑅𝑇𝑇
  = 𝐵𝐵 𝑥𝑥1𝑥𝑥2  
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And, we got expressions for ln gamma 1 ln gamma 2.  

ln 𝛾𝛾1  =  𝐵𝐵 𝑥𝑥22  

ln 𝛾𝛾2  =  𝐵𝐵 𝑥𝑥12  

The expressions at infinite dilutions: 

ln 𝛾𝛾1∞ = 𝑙𝑙𝑙𝑙 𝛾𝛾2∞ =  𝐵𝐵  
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Van Laar model which is one of the popular models: 

𝐺𝐺𝐸𝐸

𝑅𝑅𝑇𝑇
 =   𝐴𝐴12′ 𝐴𝐴21′

𝐴𝐴12′ 𝑥𝑥1+ 𝐴𝐴21′ 𝑥𝑥2
  

A12 dash and A21 dash are constants for a given system. 
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And from that we got the expressions for  



ln 𝛾𝛾1  =  𝐴𝐴12′ �1 +  𝐴𝐴12
′ 𝑥𝑥1

𝐴𝐴21′ 𝑥𝑥2
�
−2

  

ln 𝛾𝛾2  =  𝐴𝐴21′ �1 +  𝐴𝐴21
′ 𝑥𝑥2

𝐴𝐴12′ 𝑥𝑥1
�
−2

  

We also saw the infinite dilution expressions. 
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Then we started considering the Wilson model.  Apart from the others which had some sort of an 

intuitive bases, the Wilson model was based on a theoretical concept – the  local composition 

concept.  The local composition concept, just for information, we are not going to look closer at 

this in this particular course.  It is outside the scope of the course.   

The local composition is postulated to account for the short range order and non random 

molecular orientations that result from differences in molecular size and the intermolecular 

forces. If you get into statistical thermodynamics you would need to worry about all these things. 

And therefore, this Wilson model has a better grounding in the molecular theory of solutions.  So, 

are many other models such as NRTL, UNIQUAC, UNIFAC and so on and so forth … that are 

available in the literature.  They were developed ages ago, decades ago and but, which are very 

useful for finding out activity coefficients, for estimating activity coefficients … from the models. 
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Wilson model was  

𝐺𝐺𝐸𝐸

𝑅𝑅𝑇𝑇
=  −𝑥𝑥1 𝑙𝑙𝑙𝑙�𝑥𝑥1 +  𝑥𝑥2𝛬𝛬12�  −  𝑥𝑥2 𝑙𝑙𝑙𝑙�𝑥𝑥2 +  𝑥𝑥1𝛬𝛬21�  

Gamma 1 2 and Gamma 2 1 are the Wilson constants for a particular system. 
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And similar procedures as for the other models would yield … this was again left to you as an 

exercise hopefully you did them; if not please do them, and convince yourself that this is indeed 

the case …  



ln 𝛾𝛾1  = − 𝑙𝑙𝑙𝑙�𝑥𝑥1 +  𝑥𝑥2𝛬𝛬12�   + 𝑥𝑥2 �
𝛬𝛬12

𝑥𝑥1+ 𝑥𝑥2𝛬𝛬12
−  𝛬𝛬21

𝑥𝑥2+ 𝑥𝑥1𝛬𝛬21
�  

ln 𝛾𝛾2  = − 𝑙𝑙𝑙𝑙�𝑥𝑥2 +  𝑥𝑥1𝛬𝛬21�  −  𝑥𝑥1 �
𝛬𝛬12

𝑥𝑥1+ 𝑥𝑥2𝛬𝛬12
−  𝛬𝛬21

𝑥𝑥2+ 𝑥𝑥1𝛬𝛬21
�  

This is actually the same in both these expressions, the second combination term.  And we saw 

the expression for infinite dilutions also. 

(Refer Slide Time: 36:56) 

 

Then we worked out an example. This example was deliberately chosen to tell you something 

more.  The first one is a direct calculation. … The example was with respect to isopropanol. 

Isopropanol has many biological applications.  To design the distillation process for purifying 

isopropanol, the activity coefficients are required.  Compute and compare the activity coefficients 

for an isopropanol water system with mole fraction of isopropanol being 30 percent, using the 

following data taken from the literature – the Van Laar constants and the Wilson constants for a 

particular condition were taken from the literature. 
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We went through the calculations.  You went through it first, then I showed it to you.  We found 

that in the Van Laar model we got gamma 1 was 1.331 and gamma 2 was 1.119, whereas, … 

using the Wilson model we got a gamma 1 of 1.965. 
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And, gamma 2 of 1.276.  Of course, different models would give different gamma values. … To 

get better and better estimates, different models were developed, or better and better models were 

developed. And some of the model names we saw in the earlier part of this particular subsection 



itself.  This is what we did in terms of thermodynamics for solutions or of solutions in this 

particular module.  

There are two more modules that we will look at in this particular course. The first module or the 

fifth module in the sequence is on phase equilibria and the sixth module is on reaction equilibria.  

We will use whatever we have developed so far. This will give you a flavor.  After a review, we 

looked at thermodynamic properties. We defined thermodynamic properties, and presented ways 

of manipulating them, getting useful information from whatever is available easily and so, on and 

so forth. 

And then we also found that there were ways of expressing the not so easy to measure 

thermodynamic variables in terms of easy to measure thermodynamic variables, P, V, and T.  

Then, we looked at the thermodynamic aspects of pure substances, and thermodynamic aspects 

of solutions.  Then we are going to use all of those in predicting phase equilibria, and coming up 

with relevant useful predictions for reaction equilibria also.  That is what will follow.  See you in 

the next class. 

 

 

 


