Thermodynamics for Biological Systems:
Classical and Statistical Aspects
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Lecture — 58
Defining Beta in Boltzmann Distribution Law
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Something is still missing here, or something is still there which we do not know and that is beta.
So, beta is an undetermined multipliers what we proposed to get the dni’s independent so J3 is still
a constant and which we do not know what it is. So, our next step would be to find out what this
beta is but, before that let us try to make this Boltzmann distribution law a little more generalized.
n e~Péi
n; = W
This is Boltzmann distribution law
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gi 1s degeneracy so we can write as
n; gie Fe
TZ 0T ge P

And partition function (q)

q= z gie Fe

Hence

baility(p) = =
probaility(pi) = <= 5z,
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So now what is  in Boltzmann distribution law? From the above equation we can write
n; e Fa
n q

Taking Lon on both side

Inn; =Inn— f¢ —Ing

From Boltzmann and Planks law we know that

S=klnW
Where k is Boltzmann constant
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From our derivations we know that
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Hence we can write as

S
Z = InW =nlnn — Znilnni
l

By substituting the value of In n; from the above equation we will get
S=nklnqg + kBE
Where E is }}; n;g;
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From here we will get

( )v—kﬂ

del S by del E at constant volume is kf
Here we have E=U

Hence

( )V—kﬁ

And from first law of thermodynamics we know that

1
( )v—

T
By equating above two equations we get
kp !
T
Or
P 1
kT

Here K is Boltzmann constant.
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Now, if we go back to our Boltzmann distribution law ni is equal to n e to the power -beta epsilon

i divided by sum over e to the power minus beta epsilon i we can now write as n is equal ton e

to the power - epsilon i by KBT divided by sum over i e to the power -¢ to the power minus

Epsilon 1 by KBT. So, this is that Boltzmann distribution law. So, so what is the significance of

this equation is that, in a system at equilibrium, the number of molecules, the number of

molecules possessing energy epsilon i is basically proportional to the Boltzmann factor which is,

this is called the Boltzmann factors.



