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Lecture - 19
Review of Mass Flux

Welcome. In towards the end of the last lecture, | mentioned that we have completed
the second chapter on mass flux. Before we move forward, let us briefly review all that
we have done so that it gives you things in perspective, the mass flux aspects in
perspective, as well as it helps you revise some of the aspects. It improves the learning
and so on so forth. So we will do this after every large chapter.

The first chapter was on mass conservation itself and that is part review, half of it was
review. The application to microscopic systems was probably new. That is the reason
why we did not spend an entire lecture reviewing that. Very briefly mass conservation,
mass can neither be created nor destroyed that converted to a useful form was what we
started using rate of input minus rate of output plus rate of generation minus rate of

consumption equals the rate of accumulation.
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We wrote it of a certain way that would be useful. Then we had shown the application
to a humidifier, a macroscopic system. And then to a cell, a microscopic system. And
that was pretty much what it was at that stage. And also | think we derived the equation
of continuity for the total mass or a single component system, total mass. Now let us
review the mass flux aspects, .

(Refer Slide Time: 01:55)



As mentioned earlier

¢ % Quantity moved 1
Flux of a quantity = —
: time Area perpendicular to the

direction of movemnent

” . Mass moved 1
PSS FHE = time Area perpendicular to the

direction of movemnent

In fluid systems,

kg m > .1
Density x velocity = —x—=kgm?s” is mass flux
m 5

/

So, flux of any quantity we said was the quantity moved per time per unit area
perpendicular to the direction of the motion itself. In this case mass flux is mass moved
per time per area perpendicular to the direction of motion. And we also said that in fluid
systems the density times velocity directly gives us mass flux. Density and velocity are

measurable.

Mass flux formulation which helps us look at various things from the same perspective
and that is why we are after a flux kind of a formulation, makes the things general,
makes us see relationships between movement of various different conserved quantities
and so on so forth. .

(Refer Slide Time: 02:47)

Wide relevance

Flux of substrates and products in bioreactors

Flux of desirable substances in membrane filtration

Glucose flux across the cell

Product flux (e.g. ethanol) out, across the cell

The transport of protein from the site of assembly to the site of function in the cell

The mass flux of oxygen from the blood to the organ where the cells of the organ use it



Let us consider this experiment

Thermal motion

Net effect: movement of ink molecules from a region of high concentration to the
others of lower concentration

/

Then, we looked at the relevance of mass flux. And then we said how the mass flux
comes into being when there is you know the thermal interaction between the various
molecules, jiggle things around to effectively result in a motion of the species from a
region of high concentration to a region of low concentration, till the concentrations are
the same everywhere and in a particular phase.

We also said across phases it is the difference in chemical potential that drives it, but in
a phase, the chemical potential can easily be replaced by concentration and that should
work.

(Refer Slide Time: 03:36)

What causes the flux?

A driving force

What is the driving force for mass flux?
A difference in concentration over a distance - concentration gradient

Strictly speaking, it is the chemical potential gradient, but for mass flux within
the same phase, concentration gradient is sufficient

The concentration difference is ‘primarily’ or firstly linked to the mass flux

Many driving forces can cause much higher mass flux (e.g. stirring the beaker with ink)
We will see this in the last chapter = multiple driving forces causing the same flux

I

What causes the flux? That is what we have been talking about, the driving force. A

difference in concentration over distance, a concentration gradient. So we also said that,



this is primarily associated with the mass flux and therefore, we call it the primary
driving force. Although the primary driving force may not result in the maximum flux.

We said that many different driving forces could cause a flux.

For example, many different driving forces could cause mass flux. Concentration
gradient can cause bulk motion or convective motion of the fluid itself. If the fluid itself
IS moving, of course, the species would move along with the fluid much faster. The
difference in temperatures or a temperature gradient can cause a mass flux as we will

see later and so on so forth.

A difference in electrical potential, electrical potential gradient can cause a mass flux.
And many of these driving forces can cause much higher mass fluxes. However, the
one that is primarily associated with it is called the primary driving force, which is the
concentration gradient here.

(Refer Slide Time: 04:48)

Average velocities

et us consider a multi-component mixture with many species (components)

Let v, be the velocity of species with respect to stationary co-ordinates axes

The mass average velocity for a multi-species mixture with n species can be written as

==l £q.2.1.0.-1

S | In 3 tiny volume element, take th { iIndwvidual velocities

of such molecules in that tiny volume

Similarly, a molar average velocity ¢¥'is defined as
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Then we talked of average velocities, the mass average velocity, the molar average
velocity.
(Refer Slide Time: 04:55)



Let us consider the disinfection of a laboratory using formaldehyde vapours. Typically, formaiin
solutions (~40% wiv of formaldehyde In waler) Is used 1o generate formaldehyde vapours that kill micro-
organisms in an enclosed space. Care |s taken 10 seal all windows and doors with duct tape to prevent
leakage of formaldehyde vapours when the disinfection is carried out. The vapours are generated by
the increase in temperature due to the exothermic reaction between the added potassium
permanganate (KMnO,) and formalin

Let us assume that we are generating formaldehyde vapours in a long cylinder. A = formaldehyde
(MW=30) and B = air (MW=29), Let us consider the plane where x, = 1/5. Let us say that at that plane

Vo= 7 units Vo=V =8 units

I'I”(/ 4 Iy rll, 4 | s } N ". rl = ‘-. rh' e g

Then we worked out a problem to understand these various velocities.
(Refer Slide Time: 04:59)
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x 15 the mole fraction
From the problem statement we know that at the plane r,
7' = 7 units (upward direction is taken as positive)

vy ' = Bunits

From the above velocities, we can get

¢y =84 0" < 15units
Using 7' = x, 0, 4 x, ) we can get pause
1 -
7e15) 4 (1-4) B,
¥y = Sunits

By~ " = = 2units (opposte dvection)
~

Essentially a substance moving. Therefore, there is a velocity associated with it. We are

trying to get to fluxes. So, flux needs to be written in terms of velocities. That is the

reason why we looked at velocities in some detail. And this was the problem that we

worked out.
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The mass flux of a species |, wrt stationary coordinates MaSS ﬂUX and MOlal' f|UX
= i £q.21.2.~1

The molar flux of a species |, wrt stationary coordinates
Ni=c9, fq.21.2.-2

The relative mass flux of 3 species |, relative 1o mass average velocity
Ji = pi(V; =) e

The relative molar flux of a species i, relative to mass average velocity

Ji = ¢(v; = V) £Q.2.1.2.-4
The relative mass flux of o species |, relative to molar average velocity
i =pVi=v7) £q.21.2.~5

The relative molar flux of a species i, relative to molar average velocity
Commonly used fluxes

Ji = (v =v") £q.2.12.-6 & i, R /-;

And then the expressions for mass and molar flux in terms of very fundamental
quantities, density, velocity and so on so forth. The mass flux and the molar flux capital
Ni, they are vectors. Molar flux is concentration times velocity whereas mass flux is
density times velocity. Then we said that we are typically interested in the motion with
respect to other species, not with respect to stationary coordinates.

And therefore, we brought in the relative mass flux pi vi minus the average velocity,
mass average velocity. And then the relative molar flux with respect to the mass average
velocity for completeness. Relative mass flux and relative molar flux relative to the

molar average velocity.

Of these we said we commonly would be using the mass flux, the molar flux, and the
relative mass flux relative to the mass average velocity as well as the last one, the
relative molar flux relative to the mass average velocity. These are the ones that are
commonly used. There are many other fluxes that are available. You can define and so

on so forth. We will not be getting into those.

To know about some of those fluxes that are not covered here, you could look at Bird,
Stewart and Lightfoot, one of your main reference books to get an idea of a molal
average and so on so forth; molal flux.

(Refer Slide Time: 06:48)



Now, let us look at mass flux, It can be written fromEq. 2.1.2. ~5and 2.1.1. < 1, as

n

. Pi b .
Ji = PiVi = Zn I’V Z‘)I Vj

j=1 =1

From the definition of mass fraction, we can write the above as

n

o
/,:n,—w,Zn, Eq.2.12.-9

J=1

/'[ — ’L = W;Yir £q.2.1.2,~10

1y ts the total mass flux

Then, we started finding out the relationships between these various quantities to make
sense. We got to some important relationship. This was ji = ni - wi nt was one of them.
(Refer Slide Time: 07:13)
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Substituting v using Eq. 2.1.1. = 2, the above equation can be written as

‘e (4( -
Ji = v — ™Tm . R
Lj=1Y

From the definition of mole fraction, we can write

n

-
II = ,\" - X ZN} Eq. 2.1.2
J=1
or Ji = Ni= x;Ny £q.212.-8

AV; is the total molar flux

Earlier we Ji* = Ni - xi N1, . These two are important relationships where the link
between a total flux and the diffusive flux is given. However, we said in throughout this
chapter, we will consider only diffusive flux, only the flux that arises out of its primary
driving force, a concentration gradient. And therefore, you do not have to worry about
the convective bulk motion and so on and so forth.
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Constitutive equation

The conservation equation (continuity equation or “equation of change” that we
have seen so far is widely applicable.

A relationship exists between the flux of the conserved quantity and the

material (constituent) properties of the system of interest

Such a relationship/equation is not as widely applicable as the conservation equation,
but is applicable to a class of similar substances

Such an equation is called a ‘constitutive equation’

A combination of
constitutive equations (or equation of state) and
conservation equation (equation of change)

is useful in analysis and design of engineering systems

A
Then, we looked at something called the constitutive equation. We said a conservation
equation is applicable in general pretty much throughout, the for all practical purposes,
pretty universal. And whereas a constitutive equation which depends on the constituent
nature of the substance. There are, there is a relationship between flux of a conserved
quantity and the material properties of the system of interest.

Such a relationship is the constitutive equation. And a combination of the constitutive
equations or equations of state as they are called, as well as the conservation equations
are very helpful in the analysis and design of engineering systems.

(Refer Slide Time: 08:33)

Adolf Fick experimentally found the relationship between molar flux and
concentrations in dilute binary solutions of non-reacting solutes (Fick's | Law)

Fick's law in 1 dimension, for a species i:

deg dxy

‘2eDi— ==-cDi— £q.2.2.1.-1
i U dx Udx
cis the total concentration
%, Is the mole fraction of |
D, Is the diffusivity of | in the mixture
The species | moves relative to the mixture in the direction of decreasing mole fraction of i

From Eq. 2.2.1. - 1, we can infer that mass flux is proportional to the negative of
the concentration gradient

In general, any flux is proportional to the negative of a certain gradient

This gradient is that of the primary driving force for that particular flux

y
We saw the Fick’s first law which provides us with a way of getting estimates of the

flux in terms of a diffusivity coefficient and so on so forth. This is in one dimension.



(Refer Slide Time: 08:50)

r1 T -’ I = > " T
In 3-D, Ji ==¢D;Vx |
Now, substitution of £q. 2.2.1. - 2in £q. 2.1.2. - 8 yields

- I),-[" X;= :\‘., - Xj (:\f,) £q.2.2.1.-3

Or

N‘J = =-cD V,\', + x| (JV,) fq.2.2.1.-4

diffusion) (fluld motion/
convective component/

bulk motion)

You could have it in three dimensions. You know the derivative, one derivative gets
replaced by a V, which is derivative in all three dimensions. Then yeah this is the total
flux as a diffusive flux plus the flux due to fluid motion, convective component, bulk
motion. There could be many other things as well, we will see later. Here in this chapter,
we are not going to consider this at all.

The aspects have been carefully chosen such that this does not come into the picture for
understanding the subject better. In the last chapter, we will bring this up.
(Refer Slide Time: 09:28)

Now, let us look at Fick's law written in terms of the mass fraction instead of mole fraction

I:—';D Pw; £Q.22.1.-5
£q. 2.2.1, = 5 can be derived from the Fick's law in terms of molar quantities (Eq. 2.2.1. = 1), by using the definitions of
mole, mass fraction, ete
Substituting Eq. 2.2.1.-5infq21.2.-10, J; = Ny — Wiy we get

=D Vwi=1;= w; (y)  Ea.221.-6

Reading assignment: Fick’s law for concentrated solutions Section 2.2.1.1, in the
textbook

-

Then the mass, the Fick’s law written in terms of the mass fraction is where we finished

up with the, with that part. And then let me get to wherever | am getting to. Yes, this is



the, we said that you could approach these problems in two different ways. One is a
shell balanced approach.
(Refer Slide Time: 10:18)

Generally speaking, there are two approaches to solve the relevant problems

(i) the shell balance approach and
(ii) the application of the relevant conservation equation

e.g. the equation of continuity in this case of mass conservation

And the other one is application of the relevant conservation equation. A shell balance
approach means that you, we apply the material balance or we do a material balance
over a thin representative shell. That shell depends on the geometry of the system if it
is a rectangular Cartesian coordinate kind of a system. Rather, if it is a rectangular

system, then we use a rectangular Cartesian coordinate geometry cuboidal system.

If it is a cylindrical system, we can use cylindrical coordinates. If it is a spherical
system, we can use spherical coordinates. Then the equation of continuity is what we
get in the case of mass conservation.

(Refer Slide Time: 10:59)



Shell balances
Balances of conserved quantities are made over a representative shell in the system

The shell represents the geometry under consideration

For rectangular Cartesian coordinate systems: the shell could be a cuboid
For cylindrical systems: the shell could be an annular cylinder
For spherical coordinates: the shell could be an annular sphere

x It
o o
!
'
iy
] .
Let us consider a uniform membrane -
'
In that membrane, let us consider a shell of thickness Ax, through (TH
'
which diffusion occurs normal to the surface area A ol
1A
'
: '
Ax
‘“.
- e
L

I showed you how to do shell balances for a uniform membrane. We chose a shell. And
then we wrote our balances over it.
(Refer Slide Time: 11:08)

dm) _ P 2 :
Massconservanon,T =i -1+ ()g - ,()

A matenal balance written over the shell (system) on component | entering at x and leaving at x + Ax
in terms of molar fluxes

de,(MW)

” Ax = Ni| (MWDA =N yoac(MW)DA + R (MW,)A Ax £q.231.-1
[
Let us divide throughout by (MIY,)A, a constant in this case pause
dcg _ Nily = Nile 4 ax
an Ax v R'
In the ¥mit Ax = 0, from the definition of the derivative pause
dey IN;
—=—-—4+R €q.231.-2
at P anan,

To arrive at some very useful relationships for a membrane, which we used much
repeatedly in fact.
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Here, the flux N, is only diffusive

=D

== ¥R fq.231-3

at dxe ¢

If there Is no net production of | in the volume, AAx, by a reaction
aci _ :77‘\

— = D — fq.231-4
dat dx?

Fick’s second law
nder steady-stat nditio pause

d%¢

0:[)‘——‘ £q.231~5
dax*

dc,

730 B Bty § 1 1 75 £q.231-6
d( i i

You know this relationship could have been used many times. And then we looked at,
we derived the Fick’s second law from this relationship. This is the variation of time
and the variation of space both given the same relationship here, that is the niceness of
it. And under steady state conditions, we get a nice compact relationship using Fick’s
second law that can be used to analyze it.

(Refer Slide Time: 12:00)
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Mass Flux -
Conservation (continuity) Equation Approach
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?‘Z.‘.l.

Then we looked at the conservation equation approach a continuity equation approach.

We derived the conservation equation because we said shell balances could get
cumbersome, especially with cylindrical and spherical coordinate systems it could get
very cumbersome. Therefore, we derived a reasonably general equation, one very
general equation and another at constant ¢, Dag which is reasonably general as long as
there is no change in geometry.



You can, that is one of the limitations. If there is a change in geometry of the system,
you cannot use that. Otherwise you can use that. And so we have derived it. We have
an equation. All we need to do is take that equation see what terms are relevant and go
forward with it, . Let me not show you the derivation here because we are, it is a review.
So you can go back and check how we derived it and so on so forth.

(Refer Slide Time: 12:59)

Mass flux - Steady-state diffusion

q

L

Then, we looked at steady state diffusion. We started applying the conservation
equation because we have derived the relationship directly. | asked you to make a copy
of these tables, soft copy, hard copy whatever it is and keep it for ready reference
because we will be using it many different times as you have already seen. We directly
go to those tables pick up the relevant equation and use it, cancel the irrelevant terms
and whatever remains is what gives us the basis for analysis.

(Refer Slide Time: 13:26)



The properties of interest at a point in space do not change with time
The properties of interest are not functions of time — the time derivatives can be set to zero

Highly relevant in many biological situations
Biological diffusion, say across a membrane can be approximated as steady state diffusion

Steady state diffusion across membranes
Diffusion across membranes: Two mechanisms

1. Dissolve - diffuse mechanism: The solute first dissolves in the membrane and then
diffuses through it

2. Diffusion through pores: The solute needs to move through the pores in the
membrane

So steady state flux when steady state is when the properties of interest at a time do not
change, at a point in space do not change with time and that is relevant for many
biological processes. Many biological processes take place at steady state. Here we
derived the steady state diffusion across membranes which is highly useful in many

different cases.

So, we said that the diffusion occurs due to two mechanisms. One a dissolve diffuse
mechanism and then diffusion through pores. We spent a good amount of time on the
dissolve diffuse mechanism to arrive at.

(Refer Slide Time: 14:08)

Let us look closer

. tm  KDiefy
Ji == Di, eff "h“' (6 q)

As the equation Indicates, the steady state flux Is a constant. The 55 flux i independent of position.

If ¢,>¢; the fluxis in the positive x direction

W ¢ <¢;  the fluxis in the negative x direction
is defined as “permeability”, P, of the solute | across the membrane  dissolve (K) = diffuse (Di,eff) mechanism
Note: the permeability is not an intrinsic membrane property since it depends on the thickness of the membrane, d

Also, notethat K = mix=0 assumed = = -

If K<l ¢l x20< ¢, andc, | x=d<g,

The concentrations on the membrane surfaces are Jess than those in the fluids

y 4

kD; i i Sh i
——LefTective - ¢ ) which gives the

: . : . ]
This relationship the molar flux is - Di effective % or y

flux across a thin, across a membrane, across a uniform membrane. Then we said that



k D; effective
d

dissolved diffuse mechanism divided by the thickness of the membrane(d) is the

, K is the partition coefficient. Di ettective IS the diffusion coefficient. So the

permeability.

Permeability is an important parameter for any membrane. And then we looked at some
insights .
(Refer Slide Time: 14:59)

Diffusion through pores

The membrane made up of pores in an non-permeant matris, 8 matrix through which

T3 " solutes eannot dissobve and diffuse

Then I directly gave you some relationships for the diffusion through pores without the
derivation. | had given you a source for the derivation of these equations. We considered
two cases there. One is when the pores are large enough compared to the size of the
solute. Whereas, the other case was the size of the pores are comparable to the size of

the solute. We had two different expressions for that.

Then we looked at a different geometry right. This was to show you how you could
apply the conservation equation, equation of continuity to a cylindrical to a system with
cylindrical geometry. So steady state diffusion radial diffusion across tubular walls. We
had looked at a problem to understand how to use it because just application of the
equation.

(Refer Slide Time: 15:59)



Learning aspects

+
Number of |
students |
|
|
|
|
|

Relevant abllities

€.9. knowledge in & domain, and high learning (analysis, appitcation, synthesis) skills
affective skills
psychomotor skills

So | gave you the problem first. But before I, before that | talked about learning aspects.
| said, usually there is a distribution, a normal or a Gaussian distribution in terms of
relevant abilities. | typically teach in the middle, somewhere here. And if you are here,

you might feel a little bored, you could probably go through it faster.

If you are here, you might feel a little lost, which means you will have to look at it a
few more times. And then you should be able to get it. Because | have worked out every
single step, every single mathematical step, which is usually one of the major
difficulties for people here or here, sometimes even here because many textbooks do

not give you the intervening steps.

Then you spend a lot of time trying to figure out how we went from one step to another.
But that we obviate in this particular presentation as well as the book.
(Refer Slide Time: 16:53)
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And then | talked about going from a distribution like this before the course began to a
distribution that is much narrower and taller at the end of the course. This is what we
are after. That is for the learning aspect.

(Refer Slide Time: 17:07)

Solution

system = it will be easier to work with cykndrical co-ordinate

X
1oy th
ba ¢ of the speckes on our system. Here, we can directly use the equation of
continuity in cylindnical co-ordinates equation B2 from Table 2 3.2 <1
0(c,7 [(2))

0(v,=0) «0fv,<0) 0l + 1(#)

<0 (no rn)

1dg, 1'n,] b (lt‘ "h) 1 d°¢, d i
—t Vg —t V,— | - v | fom | o e e R
o8 Ly rdr dr) a8 0d N

o[ 2629«

r1s the only independent variable now = we can replace the partial derivatives with the total derivatives

¢y~ Key atr= Ry tq.242 -2
1 d [ dC))
0y "d_'(' "_'))'" fq.242 -1 ¢ ~Ke, arr - R, fa.242 -3

K = distribution co-efficient, the ratio of the drug concentrations
In the two phases at equilibrium (identify phases in Figure)

y
And then I showed you how to apply the equation of continuity to a cylindrical system

which is again applied to a very relevant situation that of a drug diffusion across a
bronchiole wall.
(Refer Slide Time: 17:13)



Solving £q. 24.2. = 1 (derivative in Eq. 2.4.2, = 1 = zero, implies “,,‘ constant, suy )

¢ =Cynr+C, fq242-4

Substituting the boundary conditions,

K (cy=¢

Gy ==

n(-=2)
Ko

Cy Key K(cy=c,) -

By substituting C, and €, In £q. 2.4.2 -4 and by rearranging

nl ol
Cq KCy - K(Cp - C,) \‘-‘ fq.242.~5
In{ k)
\ T/
Therefore, the flux at R,
}-. -D 'L‘I Dapk (Cy=Co)| _ DapK (Cp=Co) ST
A = 1] 42 -
; " orlag rla| ‘t) | Ry In(R) 4
R/ lrumy ko

We got relationships that give us the concentration profile in the wall of the bronchiole
of the drug as well as an expression for the flux at the wall. After this, | showed you the
application to a spherical system.

(Refer Slide Time: 17:51)
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Steady-state radial diffusion in spherical pellets

7

That was this aspect. Spherical pellets. Radial, steady state radial diffusion in spherical
aspects. We had used the spherical coordinate, the equation of continuity in spherical
coordinates to solve this problem.

(Refer Slide Time: 18:04)



To improve yields of ornamental plants, certain growth
factors are released from porous, spherical, ceramic
pellets embedded in the soil near the roots, in a
time-dependent fashion. At the surface of the pellet (r = R),
the growth factor concentration in the soil is KC,. Far

from the surface, the growth factor concentration drops

to zero. Develop an expression for the steady-state

release rate (moles time') of the growth factor from the
pellet.

Diffusion out from a sphere, equally in all directions
Spherical geometry, thus, spherical co-ordinates

Consider a ‘sphere of influence’ of the growth factor as our system. Note: the roots where the growth factor
Is consumed are not a part of the system.

Let us do a material balance on the growth factor over the above system

We can directly use equation C2in Table 2.3.2 -1

20 (¢# [(0)
=0(.SS| :0[v,=0):0(‘v':0) =0.(v_=0) 0(¢;# ’.(”)) ao(.noun)
e [ /g 1 d¢ 3 1 D 19,0 1 @ 80(, 1 ¥ M
—- — s Yo - — —_— - v | P s | o . s | | s, | e st | T
B \"ar Ty e Vom"g a0 \rar\" o )T smaan\*"™ 98 ) T risinte a0? !

Thus 1 d daci
D, [— —(rz -—') 0
12 or ar
ris the only independent variable here, Partial derivatives can be replaced with the total derivatives
14 (, 9)
A et = . 243.-1
Dy [r' dr (r dr 0 e

P

And thereby we picked up how the concentration of the growth factor varies in the
sphere of influence of the pellet that is releasing the growth factor.
(Refer Slide Time: 18:18)



Solution 1o the above differential equation

=A== Eq.24.3.=2
r

A and B can be found with the boundary conditions

Atr=R g=c, Eq. 2.4.3,-3
At r=wm ¢ =0 Eq. 24.3.-4
B
Substituting the above BCs inEq. 24.3.-2, T4 e E and A=10 Thus

And that is what we did. I do not think | need to get into details. You can look at the
details. Then, after that, we looked at steady state. Yeah. No I think I still have a reaction
term.

(Refer Slide Time: 18:44)

£
4
NPTEL
Steady-state radial diffusion in spherical pellets
with reaction

~
!
/

We took a spherical pellet and then we looked at inside the pellet. The only difference
between the previous times is that the previous times there was no reaction term. And
here there is a reaction term. We had looked at the case of an immobilized enzyme and
the reaction occurring there and the relevant aspects.

(Refer Slide Time: 19:02)



Let us consider an enzyme reaction for which the enzyme is immobilized on a porous spherical peliet, The
pores could have a high surface area say 250 mg ", The pellet itself is placed in a fluid environment. Since
the enzyme is immobilized inside the pores of the pellet, the transfer of substrate 1o the site of the
Immobilized enzyme through the pores, and the transport of product out of the pores are expected to play a
major role in determining the process kinetics. Thus, the transport inside the pores needs to be considered

rather than the transport to and from the surface of the pellet

Derive an expression for the ‘effectiveness factor’, which gives a measure of how much the reaction is

hindered due to immobilization.

-
So this is the immobilized enzyme pellet and the substrate needs to go through the

various pores to reach the point of the enzyme and the product needs to move out.
(Refer Slide Time: 19:14)

Sphencal geometry = 50, Iet us use sphencal co-ordinates
System: sphencyl peliet

Let us do & matenial balance on the substrate (concentration = s) over the above system

We can directly use equation C2 in Table 230 - 1

=0 (4 [(0)

=0(SS) =0
0(v, «0)

T ¢, 10¢ 1 A 19,0 10 ¢ R L
+ (l‘, + Uy + Vs - [ ( (1 ¢~ sin# ) + 1= R
o dr r d8 “rsin® J0 redr dr risin# 0o on resincd Jo¢

(w=0) *0{v,~0) D¢z f(M)

For an enzyme catalyzed reaction, the Michaeks Menten equation |s a good first approximation for the reaction rate

Also, 1 Is the only variable. Thus, the partial derivatives can be replaced with total derivatives

D 1 d A » ds o l';f,‘.“\ used 10 Indicate immobilized parameters
eff |2 dr dr Kb +s D, = effective ditfusivity
d*s 2ds l','m"\
- — - = = 431 -

rdrl Khts
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We looked at those movements, the concentration profiles of the substrate and so on so

forth along with the assumption that a Michaelis Menten equation gives us the reaction

rates.
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For writing suitable boundary conditions, let us consider the following:

We have radial symmetry

Thus, the substrate concentration at the centre must be the same value irrespective of the radial direction followed

1o approach it

There cannot be a discontinuity In the substrate concentration at the centre, irrespective of the radial direction of approach
The only way that can happen Is If the derivative of the substrate concentration at the centre Is zero

Al r ().E 0 £q.2431.-2
dr
r=R.s=s, £q.2431.~3

The above equation can be solved to get the substrate concentration profile at steady-state, and insights drawn

Let us use this opportunity 1o present & more generally applicable solution methodology,
In terms of non-dimensional variables

And then we looked at something called an effectiveness factor, which is what we
derived as a part, which is what we have found as a part of this exercise, this problem
that is.

(Refer Slide Time: 19:42)

Let us divide throughout by : _‘_““

Cx, 2ds__ _ vhatR
dy*  ydy Deyy(Kin + SaX)

Let us group the RKS term as

£q.2431,-7
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o
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Let us define 3 couple of non-dimensional parameters — we will see the utility of non-dimensional parameters
throughout the course

'

R"(?mfu)s,, 8
K a' reaction rate 2431 -
Mr n m— Thiele modulus fgan3L=3
RDesrso a' diffusion rate
B==

o 73 .24, -
X £q.2431.-9

The reaction rate is & first order reaction when 5,<< Ki,
Thus ff = - accounts for deviation from first order kinetics
For larger values of /I the reaction is zero order and for smalier values of /7 the reaction is first order.

4

And also we looked at the use of non-dimensional variables to generalize the solution.
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Let us dwvide throughout by

a*x 2 dx UimaxX R?
dy* ydy D,l.,‘h',’,, +50%)
Let us group the RKS term a
1°x 2 dx Vmax X
S co . T g2l SRS
dy! ydy Defrkm “k'; X tq.243.1.-7
m

Let us define a couple of non-dimensional parameters — we will see the utility of non-dimensional parameters
throughout the course
I ‘A ‘n ( |
" ” a reactionrate Thiele dulus fq.24.3.1. -8
My T iele modulus
RDesrSa a' diffusion rate
So
e £q.2431.-9
! &
Km
The reaction rate is o first order reaction when s,<< Ky,

Thus fi = \ accounts for deviation from first order kinetics

For larges valu:s of fi the teaction is 2ero order and for smalier values of ff the reaction is first order.

4
And coming to the, a Thiele modulus is also very generally used, widely used. It is

nothing but the ratio of a reaction rate to a diffusion rate, which lets us compare these
two rates in a system, the Thiele modulus.
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In terms of the non-dimensional variables and parameters, £q. 2.4.3.1. - 1 can be written as

B 'Ht “
i ¢
dx 2dx _ ~\Km/ [_X £q.2431.-10
dy? ydy RDesf 5¢ g lo[f\
BCs ty“lLox=1 £q. 2431, - 11
Seno Zap £9.2431.-12

Solution to Eq. 2.4.3.1. ~ 10 would give x vs. y and thus, s vs. r

The usual interest (as well as the problem need) is in knowing how much the reaction is hindered due to immobilization

An effectiveness factor that glves us & measure of the hindrance can be defined as

Actual reaction rate

f" Reaction rate in the abscence of mass transfer resistance

”~

And then where are we with the effectiveness factor? Yeah, it is an actual reaction rate
divided by the reaction rate in the absence of mass transfer resistance. We said that
when we immobilize an enzyme we could lose the speed aspects, the kinetic aspects

because of the immobilization. However, there are very many advantages to
immobilization. That is why we immobilize it.

And therefore, when we immobilize it, we would like to know how much of loss is

occurring. And the effectiveness factor is one of the parameters that gives us that. It is



the ratio of the actual reaction rate which is actually happening to a hypothetical

reaction rate which is the reaction rate in the absence of mass transfer resistance.

For example, if there is no mass transfer resistance, then the concentration of the
substrate would be the same as that in the solution throughout. So that gives us the
limiting case. So that gives us a parameter by which we can assess the effectiveness of
our design maybe if you are designing the immobilized enzyme pellet. And you can use
it in many different ways.

And then we looked at the unsteady state case, unsteady state diffusion spherical pellets
yes.
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Mass flux: Unsteady state diffusion

Unsteady state is this. Yes. Unsteady state diffusion. The only difference here is you
have an additional time variation term. And that term complicated the mathematics
significantly. We went through all the details.
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We were looking at the concentration profiles in solution of a surface modifying agent
when you place a surface to be modified at the bottom and then you allow the surface
modifying agent to move through the liquid to react at the surface and modify it. We
had considered an appropriate system to allow us for the analysis to get the various
concentration profiles of the surface modifying agent variation with time different curve

The concentration of the diffusing molecule, at a particular location, changes with time

Surface modifying agents {SMA)s are used to promote/dissuade cellular growth on a surface of interest - it could be
the hull of a ship or a container handling cell solutions, The surface Is sometimes exposed to the SMA contalning
solution for a certain period to effect the modification

Let us take the case of a thin surface sorbing SMA from a solution with SMA concentration, ¢,.. The thin surface is
placed on the bottom of the vessel containing the SMA solution. There is no movement in the solution after the

placement of the surface

Let us consider the case where the amount of SMA sorbed 15 a very small fraction of the total SMA amount
present in solution, In such cases the SMA concentration far from the surface does not appreciably change (why?)

Find the SMA concentration in solution as a function of time

for different times.
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And we had also used non-dimensional variables to solve it. The solution, the analytical
solution that we usually prefer is very involved. We also used non-dimensional

variables. | showed you that. Let us go quickly to yeah, that was our solution which is

involved.

The solution to the above differential equation with the initial and boundary conditions will provide the
SMA concentration profiles in the solution above the surface at various times

To make the solution more generally applicable, let us express the equation in terms of dimensionless variables

Let us define

Ci= Cy
f=— £9.25.~5
Ce= C
z
n=-== £9.25.-6
JAD;t

The variable, n, has been constructed to allow the possibility of conversion of the partial differential equation (PDE)
10 an ordinary differential equation (ODE) by combining both the independent terms z and t

We have constructed f = f(n) andy = f(zt)

aw 1
While using the chain rule, — can be repiaced by -‘ without any loss
" an
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Or 0=1-erf(n)

0 =cric(n)

erfc (n) is the complementary error function, which is

defined as 1 - erf (n)

Replacing the non-dimensional vanables with their

dimensional equivalents, we get

.-m(" ) £q.25.-10
va Dt

Increasing t

Yeah, this is if you look at this as the concentration axis and this as the distance axis in
the liquid. So here it is close to 0 and then at time 1 is this. At time 2, which is greater
than time 1, it is this. Time 3, which is greater than both, other two, it is this and so on
so forth. So, at various different times this profile evolves, . So that is what we found.
(Refer Slide Time: 23:30)

NPTEL

Pseudo-steady state approximation (PSSA)
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Then, we finally looked at the pseudo steady state approximation. We said when you

have two processes,
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Pseudo-steady state approximation (PSSA) is a view/technique that can be used
to simplify the analysis, and the mathematical complexity
when comparing two processes of widely varying rates

To understand the pseudo steady state approximation, et us consider the process of car manufacture

Let us focus on three of the processes as shown below

Process Making the bolts that Making the engine Making the whole car
are used in the engine

Characteristic rates | Say, 1 bolt per 5 seconds | Say, 1 engine per 1 hour [ Say, 1 car per 24 hours

If we focus on engine making, whether the rate of bolt making is 5s* or 8 5% or 2 5%, ... does no affect the rate of

engine making

If our interest is engine-making, the process of bolt-making is fast enough to be considered at pseudo-steady state

1., the changes in the rate of bolt-making (unsteady aspects) will not much affect the rate of engine-making
Also the rate of whole-car-making is 5o slow, that it is not even relevant to the rate of engine-making

Ths, for the nterest at hand, . engine-making, the process of whale-car-making can be taken as frozen
.

I think I should spend a little bit of time on this new concept, maybe. A pseudo steady

state approximation PSSA is a view or a technique that can be used to simplify the

analysis and mathematical complexity when comparing two processes of widely

varying rates, . This is important, this is the only place we could use this. And then |

gave you an example of bolt making and engine making.

The variation in the rate of bolt making does not impinge the rate of engine making. If
our interest is in the rate of engine making, we could assume that the bolt making
process is at steady state or is at pseudo steady state. It does not really matter whether
it is actually at steady state or not. It is at pseudo steady state and that significantly

simplifies the analysis.

We can, we do not have to consider the time variation. And that as you can see, as we
have already seen, simplifies the analysis significantly.
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Now, let us consider some cellular processes:

Process Enzyme action  Cell growth/division | Natural mutation
Characteristic rates | One in every 1075 l One In every 10°s | One in every 10's

If we are interested In cell growth/division, the enzyme action can be taken to be at pseudo steady state,
and natural mutation can be considered frozen’

Now, let us consider a thin membrane through which diffusion of a species occurs
Let us take the membrane as the system

Let us say the interest is in the changes In the species concentration n the solutions that are separated by the
membrane

If the diffusion through the membrane is fast enough compared to the changes in the concentration of the
species in the solutions separated by the membrane, then the diffusion through the membrane can be
assumed to take place under steady ~ state conditions.

-~
We looked at the application of that to a particular problem of determining the
permeability of a coating layer to a certain model, protein albumin, . We saw the
strategy of getting to the permeability is quite involved. We looked at it over two
classes, . So that is what we looked at in terms of mass flux. When we begin the next

class, we will start looking at momentum flux. See you then.



