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Lecture - 23 

Shell Momentum Balances 

 

Welcome back. In the last lecture, we started the momentum flux. We needed to 

understand fluids because you would not have had a background in fluids. We looked 

at first the shear stress and how shear stress can be considered as momentum flux. And 

then we looked at the most important characterization or very important 

characterization of fluids in terms of its rheological properties. 

 

Typically a τ shear stress versus shear rate graph, the various types of fluids and the 

two major types of flows. This is what we have seen in the last class. Today, we will 

start analyzing the flow. And of course, I do not have to tell you how important flows 

are right. I think it will come up somewhere, but let me briefly tell you this. There are 

flows all over the body. 

 

Blood flows, lymph flows, so many things flow in the body. Many flows occur in 

industries, okay. The industry thrives on fluids moving from one point to the other, for 

various processing for producing products, and so on so forth. So fundamentally flows 

are important for us. And that is the reason why we biological engineers are studying 

this. We are trying to understand so that we can analyze new situations then design new 

things. 

 

Or even if there are existing situations, we can troubleshoot and then operate things 

appropriately and so on. Let us move forward. We will start with Shell momentum 

balances. 

(Refer Slide Time: 01:56) 



 

Recall that we have already seen that momentum is a conserved quantity. And therefore 

momentum balance can be used as a principle to obtain useful relationships. I need to 

use this I suppose. On similar lines as shell balance, recall shell balance we considered 

representative shell of the system of interest and then we did balances over that 

differential shell. 

 

If it is a rectangular Cartesian coordinate system the shell was a cuboid. If it was a 

cylindrical system it was an annular cylinder and if it is a spherical system it was an 

annular sphere and so on so forth. So now we are going to do, in the earlier chapter we 

did mass balances over the shell. And here we are going to do momentum balances. 

That provides us a lot of insights for analysis, design, and operation. 

 

That is our interest in this. As I already said, we are going to do balances over a thin 

geometrically representative shell of fluid. And this thin representative shell of fluid 

will turn out to be the system or the control volume over which the momentum balance 

is written. And then of course, you can integrate it for the entire thing. So to understand 

the application of the shell balance principle, I am going to consider a certain situation, 

reasonably general situation. 

 

This is the case of flow in a falling film over an inclined surface. You have a surface at 

an angle. There is a thin film of fluid that is flowing over it, and we are going to consider 

that case. The flow has practical applications itself. This kind of a situation inclined 

flow, it has practical applications. The Bostwick viscometer is essentially this and that 



is used to measure viscosities of fluids that uses the same kind of flow and by making 

certain measurements the viscosity can be calculated. 

 

So in the earlier chapter we balanced mass as I mentioned. We wrote it as follows in 

general. The rate of total mass out of the system - the rate of total mass into the system 

+ the rate of total mass accumulated in the system equals zero. Or we said into - out 

equals accumulation and I have just transposed the equation here for our purposes. 

 

So rate of mass out - rate of mass in + rate of a total accumulation equals zero. This is 

accumulation in the system. 

(Refer Slide Time: 04:48) 

 

 

 

We know from basic physics, that momentum is conserved in the absence of external 

forces, okay. The rate of change of momentum is directly proportional to the forces 

acting on it. If there are no forces acting on it, the rate of change of momentum is zero. 

So when external forces are present, yeah that is what I just mentioned. Then according 

to Newton’s second law, the rate of change of momentum is equal to the vector sum of 

forces that act in the direction of motion on the system or the control volume, okay. Just 

note these are very essential things. The vector sum of forces that act in the direction of 



motion that is all. The other directions, perpendicular directions especially, we are not 

bothered on the system or the control volume. 

 

So on the same lines as this, rate of total mass out - rate of total mass in + the rate of 

total mass accumulated in the system. Instead of mass if we use momentum, we get rid 

of momentum out of the system - rate of momentum into the system, + rate of 

momentum accumulation in the system equals the sum of forces acting on the system. 

Instead of zero in it as in the case of mass here it equals the sum of forces acting on the 

system. Or in the absence of any force acting on the system it is zero. So when we say 

conservation, we are taking the special case of no forces acting on it. It is strictly 

speaking Newton’s second law that we are applying here. This is equation 3.3-1. 

 

 

Under steady state conditions, the accumulation rate is zero, okay. This term can drop 

out. So at steady state, we are imposing the condition of steady state now. We can write 

this equation as rate of momentum into the system - rate of momentum out of the system 

+ sum of forces acting on the system essentially I have taken the two terms to the other 

side. Sum of forces acting on the system equals zero, okay. I hope you are able to see 

this. This transposes equation and put this term to zero because it is steady state. 

 

 

Momentum can enter or exit the shell that we are considering by the following 

mechanisms. By molecular means, which is through momentum flux and or through 

convective means through fluid motion, okay. When the fluid is moving, there is a 

certain velocity. There is a certain mass. So there is a certain momentum associated 

with the fluid. 

 



And therefore, there could be a moment flux that is caused because of the motion of 

that fluid, right? So that also will play a role in this momentum equation. That is a 

contributor to the momentum here. So we need to take that into account. So let us 

rewrite this in terms of the quantities that are convenient to us. This is fine. This is in 

principle. 

 

This is generally valid. But none of these we can directly measure. We have to measure 

separate things. So we will write it directly in terms of measurable variables. 
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So this is the situation that I have been talking about. Let me give you some more 

details. We have an inclined plane here, we have a fluid flowing over it, which is given 

here. This is a very thin layer of fluid. I have just expanded it here. And let us say when 

it starts flowing in this region, you will have some entrance effects and so on so forth, 

the non-idealities. 

 

Here when it is moving out, it will have some exit effects. We will analyze the flow 

when these things do not bother us, okay. That will be for most of the flow essentially, 

on the entrance and exit. As long as we do not measure things there we are fine. So let 

us take a section of this flow of length L and this is a section that we are going to 

analyze. 

 

And at this section the flow is well developed and therefore vz, this is the z direction 

here, okay. This is the z direction here. vz is not a function of z, okay. It has already 



achieved well developed flow conditions, nothing is going to change with the distance 

here at a particular point away from the plate. The velocity here will be equal to the 

velocity here. That is called well developed flow conditions. 

 

That is what we are going to take. I will come to the equation in a little bit. And this is 

of course, at an angle of β, the plate is at an angle of β. This vz is not a function of z. It 

is a well-developed flow conditions which exist. It is not an ideality or anything like 

that, it actually exists. So a slightly different diagram to understand it understand the 

momentum flows a little better. 

 

This is the thin plate here. This is the fluid that is flowing over a plate. This is the shell, 

the hashed area, you know this hashed thing that I have shown here is the shell that I 

am going to consider a cuboidal shell. So it will be a rectangle in a cross sectional view. 

There is this dimension into the screen that I am not going to consider here, because 

there is no variation across that distance. 

 

And therefore two dimensions are good enough for us to get a complete picture of this. 

So this is the shell here. The shell is of a thickness ∆x, x is this direction. Yeah here is 

given here. x is this direction. z is the direction of flow here. So if this is the (0,0) point 

that we are going to consider for analysis, the shell is located at a distance of x and has 

a thickness of ∆x. 

 

So there could be momentum transfer through viscous transfer. Viscous is we said that 

one layer of fluid moving affects the other layer and so on so forth by the viscosity by 

the shear stress and so on so forth right. That is what we mean by viscous transfer. This 

was the case of the first situation where we had two parallel plates and one plate 

moving. Similar thing happens in all these situations. 

 

So there could be a momentum transfer in the x direction by viscous transfer. And there 

is of course, fluid moving in the z direction. Therefore, the momentum transfer into and 

out of this system, i.e. the shell would happen by flow. It comes in by flow here and 

goes out by flow here. So this is the second component. This is by viscous transfer and 

this is by flow. 

 



And width of the film in the y direction which is this is W. This is the direction of 

gravity and you have your angle here indicated and the length of this section as L. 
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We are interested in knowing what the velocity distribution is with or the velocity 

variation with the depth of the thin fluid that is flowing, that insight we want. And also 

we want the shear stress distribution, okay. These two are very important insights that 

we can get from flow situations which will help us in a variety of ways. And that is the 

reason why we are focusing on this. 

 

So the velocity distribution, shear stress distribution is a very standard thing that we 

look for whenever we analyze flow situations. Note τxz, x is the direction of action in 

this direction, z is the direction of motion. So this picture you need to keep on making 

till you become comfortable with it and then it will become second nature to you. Also 

note the rate of momentum is nothing but area times momentum flux. 

 

The same way mass rate is mass flux times the area. You multiply by the area, area by 

the momentum flux, we get the rate of momentum. And each term in that momentum 

balance was rate of momentum. Now we are going to express the various terms in the 

momentum balance in terms of convenient quantities, measurable quantities, 

measurable ultimately maybe. 

 

So by molecular mechanism by the viscous effects the rate of z- momentum in across 

the surface at x okay. Let me show this to you. The rate of x momentum in across the 



surface at x. This is what we are looking at. See this is our system. We are doing 

balances over the system. We are looking at how momentum moves in and out. So the 

momentum by viscous transfer will move in here and move out here. 

 

So the rate of z-momentum in the because it is caused by the motion in the z direction, 

the effect is in the x direction, but this is because of the motion in the z direction, we 

call it z-momentum. The rate of z-momentum in across the surface at x is nothing but 

the momentum flux times the area. Momentum flux τxz at x that is straightforward now. 

 

The length is the length of the plate of our analysis, W is the width. So therefore, that 

will give you the area. So area times the momentum flux is the momentum rate at in 

across the surface at x. The rate of z-momentum out across the surface at x + ∆x, which 

is here. This is the surface that we are looking at. 

 

This is x direction, x here, x + ∆x here, okay is nothing but the shear stress τxz at x + ∆x 

times the area, area remains the same. By convection, by bulk motion by the fluid 

motion, there is another component to momentum in this case. So rate of z-momentum 

in across the surface at z equals 0, you need to understand this better. So let us get back 

to that figure. See z equals 0 is what, this here, okay. 

 

So flows occurring here the system is limited to this now. Therefore flow is occurring 

here. So rate of z-momentum in the momentum in the z direction and this is the phase 

across which it enters. This is the phase across which it leaves. The phase at z and the 

phase at L; z equals 0 and z equals L. The rate of z-momentum in across the surface at 

z equals 0 is, let us write it like this. 

 



We write it in this way to facilitate us later. So let us keep this same thing. ρ vz is nothing 

but density times the velocity. So density is mass per unit volume M /L3. Velocity is 

(L/T). Let us just consider this vz alone for now. 

 

For ρ vz , (M)/L3 * (L/T)  

For vz ρ vz, (L/T) *(M)/L3 * (L/T) 

Rearranging this, 

(L/T)*(M/L3)*(L/T) = (ML/T(1/T))(L/L3)  

Multiply by area, L2, we get = L2 * [(ML/T)(1/T))(1/L2)]  for W ∆x vz ρ vz 

(W*∆x is the area L2) 

 

It is very essential to understand this. We will be using this again and again and again 

in a lot of formulations, a lot of derivations. Now the rate of z-momentum out across 

the phase at z equals L okay. I think I showed you that. Let me show it to you once 

more maybe. Here it is moving out at the phase z equals L equals the same format W∆x 

vz(ρ vz )at z equals L. 
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Now let us consider, we need the forces right. We have the input and output terms fine 

that the momentum in the momentum balance. Right this is rate of momentum into the 

system, rate of momentum out of the system. We have this third term here, sum of 

forces. We have accounted for this and this, we need to account for this in the 

momentum balance. We are just filling in the terms here. Then we are done. 

 

To account for the forces, let us draw a free body diagram. How we are doing, okay we 

are fine. So free body diagram here. This is the shell, right? A fluid that we are 

considering therefore this is x, this is x + ∆x, z equals 0, z equals L. There is we have 

cut out the shell from the fluid. The free body diagram shows the forces that are acting. 

There will be a pressure force that is acting in this direction. And therefore, W*∆x is 

the area, area times the P0 pressure = P0 (W∆x) This gives you the force in this direction. 

There is another force the pressure force that is acting in this direction. W*∆x is the 

area times PL the pressure here is PL  = PL (W∆x), that is this force. And then of course, 

there is a normal force here N. 

 

There is of course a gravitational force here which is mass, (ρ V). ρ is the density times 

the volume of this, times the acceleration due to gravity, g which is given by (ρ V g). 

And of course, this is at an angle of β to the vertical okay. So these are the various 

forces that are acting. However, note that this z is the direction of motion. 

 

And we are only worried about the forces in the direction of motion for us to do a 

momentum balance or to consider how the movement in that direction is affected by 

the forces. So we are worried only about the components in the z direction. Also note 

that the liquid layer is open to the atmosphere right? It is a thin layer with negligible 

vertical distance. Okay, I already said it is a very thin layer. 

 

That is the way Bostwick viscometer works by the way. It is a thin layer with negligible 

vertical distance. Now note when the liquid is open to the atmosphere, the pressure at 

the top surface is going to be that the atmospheric pressure. And the layer is very thin. 

Therefore there is the hydrostatic pressure because of that thickness of fluid can be 

neglected, okay. That is the reason that is one of the simplifications that we have 

because it is a very thin layer. 

 



And therefore, the difference between this pressure and this pressure can be considered 

negligible. Or in other words, P0 can be taken to be the same as PL in this particular 

case, because the layer of fluid is very thin. And because of that, this force will cancel 

with this force. However, and of course, the normal force is not in the or is in the 

perpendicular direction to the direction of motion. 

 

Therefore, this will not contribute. However, there is a gravitational force here and there 

will be a component in the direction of motion that will contribute. So normal force is 

not relevant because of the direction being normal or perpendicular to the direction of 

motion in this case. We are ignoring the force due to pressure difference because I feel 

the film is thin. I have already told you this. 

 

And therefore, the gravity force is the only significant one. If other forces are present, 

let us say some electrical force is present, some mechanical some magnetic force is 

present, some other forces are present, this is the place to include them. So this analysis 

considers only these forces, normal force, gravitational force, the pressure forces which 

we have neglected because of the thin filament and so on so forth. 

 

In addition to this, if there are other forces then you need to include that for your 

situation. Gravity force acting on the fluid in the direction of motion is going to be the 

component of this in this direction. This cosβ is the going to be the component, you all 

know that. Thus gravity force acting  on the fluid in the direction of motion =  

(LW∆x ρ) cosβ 
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Now we substitute back into the momentum balance input output forces. So the input 

due to the molecular term across x. 

 

And as we saw the force, sum of the forces came down to only the component of the 

gravitational force. LW ∆x ρ g cosβ. So all this put together is zero. That is nothing but 

momentum balance, okay. So we took the second law of motion, momentum balance 

and then we have just filled in the terms that is all we have done. Only thing is that we 

have filled in the terms in terms of variables that we are comfortable with. Let us call 

this equation 3.3-2. 

 

We are analyzing the situation when the velocity in the z direction is not a function of 

z. And therefore, these two terms are the same. So the third and fourth terms will cancel. 

Now if we divide throughout by LW ∆x and take the limit as ∆x tends to 0. Why do 

you not do that? Why do you not pause the video here, do that and tell me what you 

get. Same scheme as some of the earlier things that we have done. 

 

So it must be familiar by now. Why do you not do that practice? Let me know. Pause. 

Go ahead, please. If you did that, you would find that we are dividing by LW ∆x and 

then taking the limit. Therefore, what we have here is τ zx at x + ∆x - this because there 

will be a negative term here. I have taken this to the other side. 
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To find the constant of integration, before that let us call this equation 3.3-4. To find 

the constant of integration, we need boundary conditions. So what is the boundary 

condition here? Please pay some close attention because this boundary condition we 

are going to use again and again and again. 

 

At x equals 0 which is the surface of the liquid, the gas liquid interface okay. The liquid 

layer is moving and there is air above it gas, liquid gas interface. The layer of air that is 

in close contact with the fluid will also move at the same velocity as that of the fluid 

under no-slip conditions okay. Or let us say yeah this is air so it does not really matter. 

 

So the there is a fluid moving, there is a topmost layer. And the layer of air, the layer 

of gas above it will also be pulled along at the same velocity, okay. And this is the 



condition at the gas liquid interface. When this happens, there is no velocity gradient 

there. There is no change in velocity with respect to distance. And therefore, there is no 

momentum flux at x equals 0. 

 

The momentum flux at x equals 0 is 0. Momentum flux as we all know is shear rate and 

shear rate is proportional to the velocity gradient. If the velocity gradient is 0 the shear 

rate is 0 and therefore, the momentum flux is 0. So this is the boundary condition, a 

very important boundary condition. 

 

And the standard boundary condition that can be used at the liquid-gas interfaces 

throughout is that the momentum flux hence the velocity gradient in the liquid phase 

can be assumed to be zero for most calculations.  

 

So we have an expression for the shear stress in the fluid we are drawing insights into 

the fluid flow behavior. We have an expression we have this is a function of x. So if 

you visualize, this is the equation 3.3-6, the shear stress distribution is known from this. 

If you visualize, you see it is varying from zero value to a maximum value. 

  

It is a linear variation here, x is a linear function, (ρ g cosβ )x. So it is a linear variation 

from the value of zero to some maximum value at the solid surface over which it is 

flowing, okay. So we have the shear stress distribution. We are going to we said we 

look for shear stress distribution and velocity distribution. When we meet in the next 

class, we have been at this for some time. 

 

So when we meet in the next class, we will look at the velocity distribution. We are 

drawing insights, insights into what is actually happening. And those insights are going 

to be very useful in design of new things and understanding old things, even operation 

and so on so forth. That is the reason why we are doing this. 



 

The initial what shall I say initial perception of some students is what is the point in 

knowing about velocities? Let they be whatever they are. What is the point about 

knowing the shear stress distributions? As you will see here, these give you how the 

fluid behaves. The fluid behaves determines so many different things. Suppose you 

want to carry out certain things in a miniature level. 

 

The flows will be micro flows. Do you get the same level of mixing that is required 

when you convert a flow from a normal situation to a micro flow? That is a question 

that you need to answer if you are going to design such micro flows. And to design that 

you need to understand how the flow is happening, how the velocity behaves or the 

shear stress behaves and so on so forth. 

 

That is the kind of insight that you are getting here, okay. And that is the reason why 

we need to understand this better. Let us meet in the next class and take things forward. 

See you then. 

 


