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Shell Momentum Balances - Continued 
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Welcome, back. We are looking at shell balances in momentum flux. In the previous class, we 

looked at the case of a thin layer of fluid moving over a flat plate and we tried to write shell 

momentum balances for that situation. We arrived at the expression. We considered the 

contributions of momentum flux through molecular means or viscous means and also through 

convective means and then we looked at the forces.  

 

We put in the various terms into the momentum balance equation then we arrived at  

𝝉xz = ρ g x cosβ 

which is nothing but a linear variation along the x direction as the x changes, it goes from 0 

value as indicated by this to a maximum value somewhere here okay. So, this is what we have. 

Therefore, we have this shear stress distribution in this particular situation. We also need the 

velocity distribution.  

 

How do you go from the shear stress distribution to the velocity distribution? Yes, we need a 

relationship between the velocity and shear stress. What is that relationship? You have already 

seen this, can you think about it? Let us say for a Newtonian fluid, can you think about it? Yes, 



it is a Newton's law viscosity. Newton's law viscosity says that shear stress equals viscosity 

times the shear rate, right. 

 

So we need a relationship between shear stress and shear rate to get the velocity distribution or 

you could also do it that way, there are various ways of doing it, this is one way of doing it. 

We get the shear stress profile and then use the relationship, a fluid property relationship, fluid 

constitutive equation between shear stress and shear rate and get the velocity profile. Let us do 

that in this class.  

 

For Newtonian fluid, we know that, 

𝝉xz = µ(
𝒅𝒗𝒛

𝒅𝒙
) 

Where the subscripts are relevant to the directions here z and x. 
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So, if we substitute this constitutive equation into 3.3 - 6 which is the expression for the shear 

rate. Let us call this equation 3.3 – 7. So now if we integrate this, we directly get vz as simple 

as that and if we solve this differential equation, then we get 3.3-8 as shown below 

 



 

How do you find the constant of integration? We need a boundary condition. Now what is the 

boundary condition? Okay, now pay some close attention here because this is also another 

standard boundary condition that can be used under these situations. It is called the no-slip 

boundary condition at the solid-fluid surface. The earlier standard condition was the gas-liquid 

surface, the 2-fluid surface. 

 

The gas-liquid surface vz since the layer that is closest to the liquid is layer of gas that is close 

to the liquid is also moving at the same velocity as that of the liquid. The velocity gradient 

there is the 0 and therefore the shear stress there is 0. Here at this solid-fluid surface, the 

velocity equals the velocity at which the surface itself is moving because the last layer of the 

fluid or the layer closest to that of the surface attaches itself to the surface, clings to the surface, 

does not slip over the surface and therefore its velocity is the same as that of the surface, okay 

that is what is called the no-slip boundary condition. 

 

The fluid is assumed to cling to any solid surface with which it is in contact and therefore it 

moves at the same velocity as that of the solid surface. Here, the boundary condition can be 

written at x = 𝛿 , okay the x is moving. 

 

The x coordinate is in this direction, x = 0 is the surface of the liquid layer, x = 𝛿 is the wall or 

the solid surface and there vz, the velocity of the liquid equals 0. Note the liquid is a system, 

therefore the velocity of the liquid is 0.  

x = 𝜹 , vz = 0  Equation 3.3 – 9. 
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We will call this equation 3.3 – 10. Okay I should have shown you. I would like you to stop 

the video here, pause the video here, go to any graphing software, put in some numbers or put 

in some functionality here, put in some number for this and see how vz varies with z. 

 

See how the velocity profile is in that thin layer of fluid, it will be interesting when you do that 

and then come and check this, pause go ahead. If you did that, you would have found that the 

velocity profile is parabolic here at x2 variation. Therefore as x varies, you have vz varying in 

a parabolic fashion. Here it is 0 and it goes to the maximum somewhere here okay. This is the 

velocity representation at 0 here, it is the maximum here.  

 

It is some sort of a parabolic velocity profile x2 term here, 1 – x2, so you have just the reverse, 

but the pattern is the same. Where does the maximum velocity occur you can take a look at this 

and say that it occurs at the top surface. If you look at the expression here it is (1 – x)/𝛿2.  

 



This takes a value of 1 if it is 0 and therefore the maximum velocity happens when x is 0 which 

is this surface here. So that is the way we analyze things.  

 

We would also like to know the average velocity over the cross section okay. So the average 

velocity over the cross section of the film because the velocity is varying at different points in 

the film, right. 

 

At the bottom most it is 0, at the top most is a maximum. There is a certain variation across the 

film. Therefore, if you want to find out the average, you take area weighted average and that is 

nothing but vz averages. You take a double integral of this y varying from 0 to w, x varying 

from 0 to 𝛿, y is in this direction varying from 0 to w, of course x is in this direction varying 

from 0 to 𝛿,  

 

 

So as you can see the w is the same at both ends, therefore I mean the numerator and 

denominator that will be cancel out and the remaining would turn out to be Equation 3.3 - 12.  
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This is the average velocity and we are usually interested in the average velocity, also we are 

interested in the volumetric flow rate. The volumetric flow rate is nothing but the average 

velocity times the area, right.  

 

So area times the velocity is flow rate or formally speaking you could go from 0 to w, 0 to 𝛿, 

So at every point you take the velocity multiplied by the area and take the total of the whole 

thing. So if you do that you will get, 

 

Therefore, we found initially the shear stress profile, in this case the velocity profile. 

 



And then the maximum velocity expression, the average velocity expression and the volumetric 

flow rate expression. So this you can do for many different situations and these are the kind of 

insights that we are looking for when we analyze fluid systems for our purposes. I think we 

will stop here, the previous class was something new where a lot of understanding needed to 

happen and you needed to get a picture. 

 

We completed that here in terms of the various parameters that we can calculate. Let us take a 

break here. When we come back, we can start out fresh and take things forward. This is shell 

balance, of course next we are going to do the conservation equation application indirectly, 

before that we are going to derive the conservation equation of a form that will be useful to us 

and then we will apply it.  

 

I am going to show you that if we apply it to the same case in one step you get the answer rather 

than going through all this. See you then. See you in the next class, bye. 


