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Lecture – 28 

Laminar Flow Through a Pipe 

 

Welcome to the next lecture. We are looking at momentum fluxes. We derived the momentum 

balance equation, the equation of motion and I showed you how applying the equation of 

motion in some situations, in fact in many situations can significantly simplify our analysis. 

The shell balances are robust, however, they will take a lot of effort, they are cumbersome, 

especially in cylindrical and spherical coordinates. 

 

Whereas the equation of motion we have already put in the effort we have derived those 

equations, we can directly take those equations and apply them as long as we are clear as to 

their limitations of application. Today, I am going to talk to you about the analysis of flow 

through a cylindrical pipe. Flow through a cylindrical pipe is so widely used okay. You just 

look around yourself, look around within yourself. 

 

There are so many cases of flow through cylindrical pipes. All your vasculature are cylindrical, 

right. So any flow you know in the body is flow through a cylindrical pipe. 

(Refer Slide Time: 01:33) 

 

Let me tell you some, so it has significance in a wide variety of situations. The flow in micro 

devices if you are interested in fabricating micro devices lab-on-a-chip and so on and so forth, 



various different micro devices they all involve flows which are usually through cylindrical. It 

is very tiny cylindrical pipes of tiny diameter. Flow of fluids in the human body, at least as a 

first approximation is that.  

 

Flow of liquids and gases in the bio process industry or all flow through cylindrical pipes, 

almost all through cylindrical pipes and so on and so forth, so it has by entry levels. So pay a 

little bit of attention what are we deriving here can be applied in a wide variety of situations. 

Let us consider laminar flow of a Newtonian fluid okay that is the first assumption. We are 

looking at laminar flow of a Newtonian fluid.  

 

Down a cylindrical pipe placed vertical okay that is the situation and we are going to consider 

the situation when the flow is well-developed okay. Suppose you have a pipe of a certain length. 

At the entrance, there could be some entrance effects and at the exit there could be exit effects 

okay or the end effects would be there at the two ends. For a majority of the pipe, the flow 

would be well-developed.  

 

There are estimates by which you can get the length to which the flow needs to travel before it 

gets to well-developed flow conditions as it is called. You already seen an example of well-

developed flow when we said that the velocity of a thin layer of fluid flowing over an inclined 

plate does not change with the distance okay, which means the flow is well-developed there. 

There are various situations where the flow is well-developed.  

 

Here, the flow is well-developed for most of the pipe. So the analysis is relevant for the pretty 

much the entire pipe except for the entrance and exit regions and the entrances and exits could 

be few with huge lengths in between, so all there it is relevant. This is the definition of well-

developed flow. The axial velocity at any particular radial position in the pipe is not dependent 

on the length.  

 

The axial velocity at any radial position okay, it is a cylindrical pipe, so we are looking at radial 

positions of various diameters, various distances from the center, there the velocity at a 

particular point is the same along the length. The velocity at the center would be different from 

the velocity near the wall that is perfectly fine, but the velocity near the wall would be the same 

irrespective of the distance that is traveled in the pipe that is what we call as the well-developed 

flow okay.  



 

In other words, across a cross-section, there would be variation, but across the length there will 

not be a variation, good. We are going to derive the profiles of shear rates and velocities across 

the tube diameter that is our main interest here to get insights and this is useful hugely in 

analysis, design, operation, and so on. 
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The system of interest is cylindrical and therefore it is best to use a cylindrical coordinate 

system here and therefore check back, go to your table 3.4 -2 you made a copy of it, take a look 

at the copy. We are going to look at equation A2 because it is the case of a Newtonian fluid in 

laminar flow, therefore we can directly use it okay.  ρ and the viscosity are constants. 

 

Now, we are going to look at the terms that are relevant. We are looking at steady state case, 

therefore no time derivatives, the first term goes to 0. There is no velocity in the radial direction, 

there is velocity only in the axial direction, therefore vr is 0 that goes to 0, vθ which is the 

velocity in the  θ direction, there is none, there is no circulation there, therefore vθ is 0. This 

term also disappears because vθ is 0. 

 

Now vz is there, vz is certainly there moving down, this is a vertical pipe moving down vz. The 

z direction is the vertical axis. However vr, vr is anyway 0, we do not have to worry about it. 

There is no velocity in the radial direction okay. Let me recalibrate here. This is a vertical pipe. 

This is the axial direction, this is the radial direction. There is vz, there is no vr, there is no vθ 

okay, good.  

 



 

So this term goes to 0,
𝑑𝑝

𝑑𝑟
we do not know much, let us keep that, vr is 0 therefore this term goes 

to 0, vr is 0 so this term goes to 0, vθ is 0 and so this term goes to 0, vr is 0 zero this term 

disappears and gravity acts only in this direction. The r direction is perpendicular to the gz 

direction, there is no component of g and therefore gr is 0. So what do we have here? What is 

left here? It was nothing else except for this term. So we get this 3.4.2 – 1.  

 

 

 

We get  
𝜕𝑝

𝜕𝑟
= 0 after we cancel all the irrelevant terms okay. What does this mean? Okay this 

means something very powerful or very insightful. There is no variation in pressure across the 

radius. This is a vertical pipe right, there is no variation pressure across the radius. The pressure 

across the cross-section is the same okay. That is something good to know, there is we do not 

have to worry about pressure varying across the cross-section in cylindrical flow.  

 

 

So p is not a function of r that is what we got. So we will call this equation 3.4.2 – 2. The 

pressure across the cross-section at a particular length in laminar flow through a pipe does not 

depend on the radial position okay. Note that we are saying that the pressure across the radius 



is the same, however, the pressure across this radius could be very different from the pressure 

across this radius okay. There could be a variation in pressure with the axial distance.  

 

There is no variation in pressure with the radial distance. You need to make these fine 

distinctions here okay, I mean to have that picture very clearly in mind that is an essential 

aspect of this course, some more concentration, some better understanding of the physics is 

absolutely required here. This happens to be a very important insight. We can now just close 

our eyes and say across the cross-section the pressure does not vary okay, that is very useful.  
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Next let us consider equation B2 in table 3.4 - 2. B 2 is this same equation, yes the cylindrical 

coordinate system 3.4 - 2 B2, yeah B2 is in terms of the other velocity, this was B1right, this 

was we considered A2. A2, B2 and C2 okay. Equation A2 we considered first and now we are 

going to consider B2. This A2 was in terms of vr and so on so forth, B2 is in terms of vθ. This 

is the equation, please verify.  



 

 

Now we start cancelling the terms, steady state term. As a steady state case, therefore there is 

no variation with time, this goes to 0, vr is 0 so this goes to 0, vθ is 0 so this goes to 0. Same 

reason, this term disappears, this term disappears, this term disappears, this gone, this gone, 

this gone and gt term, there is no g in the  θ direction okay. The direction is perpendicular to 

the vertical direction where it is relevant and therefore this goes to 0.  

 

So the only term that remains is this –
1

𝑟
 
𝜕𝑝

𝜕θ
 = 0. What does this mean that there is no variation 

in pressure across  θ, both put together as there is no variation in pressure across the cross-

section, this and the radius  θ and the radius put together gives us there is no variation pressure 

across the cross-section, 
𝑑𝑝

𝑑θ
= 0, p is not a function of  θ okay.  

 

So the pressure does not vary with the radial position, the pressure does not vary with the 

angular position, and therefore the pressure does not vary across a cross section okay.  
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Now let us consider equation C2 okay. We are directly taking these balances and seeing what 

insights they are giving us. We take equation C2, apply it to here. This is the equation C2 in 

terms of vz okay. This is steady state situation, therefore there is no variation with time, the 

time derivatives are 0, vr is 0 therefore this term disappears, vθ is 0 this term disappears. The vz 

of course exists, however vz is not a function of z, well-developed flow okay. 

 

 

 



 

Therefore the derivative goes to 0, this term disappears, 
𝜕𝑝

𝜕z
 of course remains. Here vz of course 

varies with r okay, at the cross-section there are different velocities, therefore this term remains. 

The vz is not a function of  θ, this velocity does not vary with  θ, therefore this derivative goes 

to 0. Similarly, vz is not a function of z, therefore this term goes to 0 and of course gz is in the 

same direction as relevant, therefore this term remains. So, what we get is, okay I have just 

transpose this, I have taken this to the other side . 

Now let us define a capital P as pressure. 

 

 

So, this can be replaced with this okay, I have combined terms. The use of this would become 

apparent later maybe, but take it on face value for now. And we know from these equations 

when we substituted earlier that p is not a function of r and p is not a function of  θ. 
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Therefore, the capital P which we defined as p –  ρ gz is also not a function of r and not a 

function of  θ because this is the combination that we are looking at. Since capital P is a function 

of z alone, we could replace the partial derivative here 
𝜕𝑃

𝜕𝑧
 by  

𝐷𝑃

𝐷𝑧
 

 

Similarly vz and r are functions of r alone, r is r and vz varies only with r, it does not vary with 

z well-developed flow or with  θ. Therefore the partial derivative on the LHS also can be 

replaced by the ordinary derivative. So this r becomes the only variable here, so you could 

replace the partial with the total. So in the partial derivative equations are much more difficult 

to solve as you seen earlier. 

 



But this physical situation allows us to directly write these partial derivatives as total 

derivatives because of the variables that are involved have come down to one each on both 

sides. So, we could write 3.4.2 – 7 

Let me see what I have okay. Let us take a break here, it is good to take a break here, we have 

been with some intense stuff for about 20 minutes.  

 

I think it is best to take a break here. Let us continue with the derivation of the relevant 

relationships for laminar flow of a Newtonian fluid through a cylindrical pipe placed vertically. 

See you then. 


