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Lecture - 48 

Unsteady State Heat Conduction 

 

Welcome back in this class, let us start looking at unsteady state heat conduction. We already seen 

an example of steady state heat conduction. So, the next aspect is unsteady state heat conduction. 

What does unsteady mean we all know that the temperature that the radiation with time at a point 

in the system does not happen, variation of relevant properties at a point does not happen. The 

values remain the same with time. 
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Again let us pose a problem solve it. All these will serve as problem solution strategies also. And 

we pick up the relevant principles relevant tools as we go along in the context of the problem itself. 

This problem reads us in a micro analysis system for the determination of an analyte the sample is 

first sprayed as 10 micro liter that has to be micro liter let me correct write away for you.  

 

In a micro analysis system for the determination of an analyte the sample is first sprayed is 10 

microliters spherical droplets into a heating zone. The droplet needs to be heated to 60℃ to 

complete a reaction that is a necessary step for the analysis. This is what we have here, the very 

standard situation, especially in micro analyses assuming that the properties of the sample drop 



are the same as that of water, since the sample is predominantly aqueous, so, that is not a bad 

assumption at all. 

 

Estimate the time needed to reach the steady state temperature in the droplet, the droplet needs to 

reach a temperature of 60℃ steady state for the reaction to have been completed at this step and 

we are asked to find the time that it takes to reach very relevant because heating rates must be 

adjusted such that there is not much time needed for the entire droplet to reach steady state. That 

is the whole idea here.  

 

So, this is probably a question that is raised the design stage as to how much of heating should be 

there so that the time is minimized or if we have this much heating, is it good enough? How long 

does it take? Maybe there is a heater that is already available. But the company wants to use it, the 

designer wants to use it and wants to check whether the that will serve the purpose, very many 

different situations, for all those situations, this analysis becomes helpful. That is the beauty of this 

fundamental application is disrupt to us, rather, whichever it can be used in very many different 

ways. 
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Let us go about solving this. We are of course dealing with a sphere. So obviously spherical 

coordinates are the ones that are relevant. We got use the equation of thermal energy here. So this 

go to that table, pick up the relevant equation. So in this case, these spherical coordinate equation 



and of course for laminar Newtonian fluid in this is water Newtonian fluid is perfectly fine, 

predominantly water Newtonian fluid is perfectly fine.  

 

Constant ρ and k can be assumed in this case. So that is not a problem. So, equation C2, we could 

pick up from table 4.2- 1. And if we cancel the irrelevant terms, what I am going to ask you to do 

is, stop or pause the video here. Go back to that equation or pick up this equation C2 from 4.2 - 1. 

Cancel the irrelevant terms, see what you get, then we will continue. I think you need to pick this 

up. So why did you do this and then when you come back, we will see whether you got the same 

thing.  

 

Go ahead. Take as much time as you want. Time is not a big, you know, time is not a big constraint 

here. I hope you got this as the remaining terms
𝜕𝑇

𝜕𝑡
. This is unsteady state the temperature inside 

the droplet continuously varies the temperature inside the system continuously varies. Therefore, 

this term is highly relevant equals  

 

 

So this, these would be the only terms that remain. And as you know, we have a time derivative 

here a partial differential equation along with the specific space derivatives. So, the mathematical 

effort that is needed is going to be quite significant to solve this. Let us solve this, I am not going 

to show you all the steps you need to now you have enough I have shown you individual steps 

each and every individual steps so far. So now I am going to let you figure it out yourself. But that 

is only way you learn.  

 

So let me show you the solution. It is not highly trivial So, I will show you the solution, but I want 

you to fill in the intervening steps is to that the simply way to learn. So this is equation 4.2.2 - 1. 

Let us define the non dimensional variables α = k/(ρCv), thermal diffusivity. Let us say that the 

drop surface temperature being raised to 60℃, Ts at the start of the cycle so the surface is already 

at 60 ℃ when you put in it is how the temperature varies inside the drop. That is a concern here.  

 



 

Now we need to boundary conditions because it is a second order variation in space. So, we have 

the initial conditions, we have the boundary conditions, we can solve this of course, we would like 

to solve it in terms of non-dimensional variables makes the solution a lot more general.  
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So, let us define the following non-dimensional variables η as r / R these distance variable a θ 

temperature variable as T - T0, the entire initial the temperature at which the entire droplet is 

initially divided by Ts, the surface temperature 60℃- T 0, that is what we are going to define our 

θ as, and then we are also going to define a 𝜏, because there is variation of time. None of these 

show a variation of time 𝜏 as αt / R2.  



 

𝜏 = αt / R2 

 

Work out the dimensions, this is quite straightforward to C this quite straightforward to C, what 

are the dimensions of these to ensure that 𝜏 is indeed dimensionless. So, in terms of the non-

dimensional variables, the differential equation and the initial boundary conditions will become, 

do work this out it is quite a few steps do work it out and check for  

 

 

So, we have the partial differential equation in terms of the non-dimensional variables, we non 

dimensionalize it and we have the initial and boundary conditions in terms of the non-dimensional 

variables, we can solve this and for solution, you will have to go back to your math course your 

differential equations course, see how to go about solving this form. Of course, here we cannot 

apply separation of variables? Check out why boundary conditions need to be homogeneous. Try 

to understand that better and then if you follow a method that will be suitable here, that is going to 

be something like this.  
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And then this equation where we get into this form, a lot of us write it then differentiate it and see 

that it indeed reduces to this form. So, this is closer to the way things are given into the textbook 

because I have spent enough time to prep you to see how condensed things are in the textbook and 

other textbooks. My textbook is has a lot of details given maybe not here, maybe initially. And 

here the idea is to get you into that framework.  

 

Because the information is available only in this form, you need to fill in all the gaps. Many people 

do not realize that you need to fill in so much gap that they are usually confused or wonder how 

can you go from this step to this step. This is equation 4.2.2 - 14.  
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So from if you have a variation of θ then you can pick out the variation of T just by a quick 

transformation here. So, but having it in form of θ makes a general θ versus η, θ versus 𝜉, θ versus 

𝜉 for various values of 𝜏. You get this is θ.  

 

and this is for various values of the non-dimensional time at time = 0.005, this would be the profile 

of temperature in the droplet at 𝜏 = 0.01 this would be the profile of temperature point of θ that is 

which is nothing but temperature variable at 0.05 it will be like this at 0.1 it will be like this and 



so on and so forth. So as 𝜏 increases at some point in time, everything will reach 60℃, which is 

this well. 
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Now, we need a certain time we are working at a problem? So to have some feed of times involved 

the 𝜏 needed for the temperature of the center to say reach 99% if you are wondering 100 percent 

it is in final thing the way the problem is set up. So, for it reach 99% of the surface temperatures 

turns out to be about 0.5. So, that is what this one shows here it will go on you work out the various 

profiles for it to reach 99% here you need a 𝜏 of 0.5.  

 

αt/ R2 = 0.5 and t|ss = 0.5 R2/ α 

So, for steady state conditions, we have 0.5 approximately steady state condition. So, α t / R2 which 

is 𝜏 is 0.5. So, the time that is needed for steady state is nothing but 0.5 R2 / α in this transposing 

this equation and for a spherical drop, like the one that we consider here 10 microliters the radius  

 



 

 

Remember this is thermal diffusivity not the units here, meter square per second same as mass 

diffusivity or kinematic viscosity thermal diffusivity here it is nice remember that value for water 

1.5*10- 7 meter square per second and therefore, the time that is needed to reach steady state 0.5 

R2 divided by α terms are to be 6 seconds, quite decent the entire droplet is going to reach 99% or 

60℃ in about 6 seconds, which is a good design, you can very quickly within 6 seconds it reaches 

that temperature.  

 

So there is a temperature that is needed for the reaction to go to completion for the next step to 

work, so that is perfectly fine. I think we will stop here for this class, we have completed the 

chapter on thermal flux in third chapter. And we looked only at the heat flux as a function of its 

primary driving force a temperature gradient, conduction alone, all the velocities were 0 as you 

saw, but we needed that foundation for it to be complete, so that which we can use later.  

 

So the primary driving force for heat flux is the temperature gradient and we saw on the 

temperature gradient cases in this chapter. When we meet next I will briefly review this chapter 

and then move on to charge flux see you. 


