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Lecture-06 

Equation of Continuity 

 

Welcome. In this lecture we will start looking at the useful form of material balance in a fluid 

system. What we mean by the useful form, the form is in terms of measurable or relevant variables, 

which we can relate to and that is why we call it a useful form. The principle is just the same mass 

conservation, mass can neither be created nor destroyed and that we have written it in a form of 

variables that can be measured or are relevant. 

 

That is why we call it a useful form, because we can directly measure it and we can use the principle 

in a way that is helpful to us. 

(Refer Slide Time: 00:54) 

 

We are going to look at what is called the equation of continuity by applying the material balance 

equation in the fluid system. So, material balance applied to a fluid system gives you equation of 

continuity. To make things simpler let us first consider a single component or it could be the total 

mass of a multi component system. Either way, that does not matter, we are looking at only one 

aspect of this. 

 



So, let us say that we are going to consider a single component system, which means the entire 

stream is just one component, it could be water, it could be whatever and so on so forth. But it is 

a single component. 

(Refer Slide Time: 01:39) 

 

To do the analysis let us consider a Cartesian coordinate system, you know what a Cartesian 

coordinate system is, right-handed Cartesian coordinate system. This is the X coordinate; this is 

the Y coordinate. You know the right-handed rule, therefore you go from X to Y, the direction of 

movement of a right-handed screw when you go from X to Y gives you the direction of  Z. 

 

That is how Z has come out in this direction, you move from X to Y, the right handed screw moves 

in this direction and therefore Z is in this direction, you may know this but I normally find that 

many people do not appreciate this in the first go, so it is good to understand this very clearly. We 

are going to consider a certain cuboidal region in this rectangular Cartesian coordinate space. 

 

This is the cuboid here. So, the coordinates of this point here are x, y and z, the coordinates of a 

diametric opposite corner are x + ∆x, y + ∆y, z + ∆z. 

 

So, this is where we are going to apply our balances or develop our balances. So, this is a fluid 

system which means fluid is flowing in all directions in the system. We are focusing on one 

direction at a time. The volume of the element is ∆x∆y∆z, as it could be obvious from this, it is a 



cuboid (volume of a cuboid =l*b*h). This is the material balance expression, input rate - output 

rate + the generation rate - the consumption rate = 
𝑑𝑚

𝑑𝑡
 (accumulation rate of that species in the 

system)  

𝑑𝑚

𝑑𝑡
= 𝑟𝑖 − 𝑟𝑜 + 𝑟𝑔 − 𝑟𝑐 

 

 

If a single component system or the total mass is considered there will be no generation or 

consumption. It is just a single component throughout. And therefore, there is no rg, there is no rc, 

the balance becomes ri - ro , (input rate and output rate alone) which cross system boundaries alone, 

equals 
𝑑𝑚

𝑑𝑡
 of that single component in the system. So, this is what our balances come down to. 

𝑑𝑚

𝑑𝑡
= 𝑟𝑖 − 𝑟𝑜                                    1.4.3 − 2 

 

Now let us write this in terms of variables that we can measure, or we are comfortable with. Before 

that the equation number here according to your textbook is 1.4.3-2. 
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This is a 3-dimensional flow, there is flow in all directions, we need to make it general enough for 

our purposes, therefore we have considered three dimensions. So, we need to consider the 



contributions from each direction, one by one. Before that, you know, density and velocity, the 

units of density are kilogram per meter cube, the units of velocity are meter per second. 

Density (ρ) : Kg m-3 

Velocity(v) : m s-1 

 

Therefore, if you multiply density and velocity, you will get units of kilogram per meter square 

per second(kg m-2s-1); mass per time per area perpendicular to it. And therefore, this is nothing 

but, mass flux, this is what fluxes, as we have already seen in this course. It is the amount 

transferred per time per unit area perpendicular to the direction of transfer. So, rate is flux times 

area. 

Mass flux : 
𝐾𝑔

𝑚3 . 
𝑚

𝑠
 = 

𝐾𝑔

𝑠.𝑚2 

Rate of mass transfer= 𝐹𝑙𝑢𝑥 ∗ 𝐴𝑟𝑒𝑎 

 

Refer to Screenshot picture 2: 

So, the rate of mass in,
𝑑𝑚𝑖𝑛

𝑑𝑡
 through the face at x, why are we interested in the rate of mass in 

because the various terms in the material balance expression ri , ro, these are rates, therefore we 

need to write in terms of these mass rates. Rate of mass in, 
𝑑𝑚𝑖𝑛

𝑑𝑡
 through the face at x, what do we 

mean by the face of  x. This is the x coordinate and therefore this is the face at that x coordinate. 

So, this face is what we call the face of x. 

 

Remember it’s area is going to be ∆y∆z, the face of x is going to have an area of ∆y∆z (Area of 

rectangle=l*b). Therefore, the rate of mass in, 
𝑑𝑚𝑖𝑛

𝑑𝑡
 through the face of x is going to be the flux 

times area, the flux is nothing but density times velocity. So, density is ρ, I am not going to say 

any constant or anything like that. It is general, it could vary, it could be a gas, it could vary. 

 

Rate of mass in through the face of x = Mass flux.Area (Mass flux = Density.Velocity = ρ v) 

 

Therefore, ρ that is density at that particular instant that we are worried about at that particular 

space, that particular time, ρ times vx  (the velocity in the x direction), times ∆y∆z, (the area of the 

face of x),  it is going to give us the rate of mass in through the face of x. 



Rate of mass in through the face of x = (ρ vx)|x ∆y∆z 

 

The rate of mass out through the face at x + ∆x, let me show you the face of x + ∆x here. So, this 

is x + ∆x. And therefore this is the face at x + ∆x, we are looking at something entering at x and 

leaving out through x + ∆x. And therefore, the rate of mass out through the face that x + ∆x is 

nothing but ρ times vx, which is the flux times the area, which is again ∆y∆z that area does not 

change. And therefore, this is the rate of mass out through the face at x + ∆x. 

Rate of mass out through the face of x + ∆x = (ρ vx)|x+∆x  ∆y∆z 

 

Similarly rate of mass in through the face of y, which is the face at y, y is this; this is the axis here 

so at a particular point in y we do not have this face and therefore the area is going to be ∆x∆z, 

that is going to be the face at y. So, rate of mass in through the face at y is going to be ρvy (this is 

the flux of mass at y) to be multiplied by the area of the face at y, ∆x∆z. 

 

Rate of mass in through the face of y = (ρ vy)|y ∆x∆z 

 

Similarly, the rate of mass out through the face at y + ∆y. It is the motion in this direction, the y 

direction is considered. Therefore, the entry is in this direction, the exit is in this direction. Entry 

is through the face at y, the exit is through the face y + ∆y. And therefore, the rate of mass out 

through the face at y + ∆y is ρ times vy (at y + ∆y) times ∆y∆z 

 

 Rate of mass out through the face of y + ∆y = (ρ vy)|y+∆y ∆x∆z 

. 

You could write the other two things, what I would suggest is pause the video here and I have 

shown you this so let me say this and then you can write the next last term or last but one term, the 

rate of mass in through the face at z, again, just to make things clear z is in this direction. So, the 

entry is through this face here, the exit is through this face here, the entry is through the face at z 

and the exit is through the face at z + ∆z. 

 

Rate of mass in through the face of z = (ρ vz)|z ∆x∆y 

 



The area of both those faces are nothing but ∆x∆y right is that clear, hold on to that idea now you 

must be familiar, rate of mass in through the face of  z is going to be ρvz times ∆x∆y. And can you 

write the term for the rate of mass out through the face at z + ∆z. Please pause the video here and 

you write it, hopefully you got rate of mass out through the face of z + ∆z equals ρ times vz (at z + 

∆z) ∆x∆y. 

 

Rate of mass out through the face of z + ∆z = (ρ vz)|z+∆z ∆x∆y 

 

So, these are all the terms ri - ro of this equation which is the mass balance equation, we still have 

this term left, 
𝑑𝑚

𝑑𝑡
 let us write that term, that term is nothing but 

𝜕m

𝜕𝑡
 or 

𝑑𝑚

𝑑𝑡
 ( 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1.4.3 − 2). 

Mass is nothing but density * volume, density is ρ, the control volume of the system is ∆x∆y∆z. 

So, 
𝜕ρ∆x ∆y ∆z

𝜕𝑡
 is going to give us the rate of mass accumulation within the volume element. 

𝑑𝑚

𝑑𝑡
=  

𝜕ρ∆x ∆y ∆z    

𝜕𝑡
  

Now, notice that ∆x∆y∆z are not functions of time, they do not change with time, they are fixed 

lengths. And therefore, since they are not functions of time they are constant with respect to time 

and therefore you can take them out of the derivative, ∆x∆y∆z
𝜕ρ

𝜕𝑡
 is the term here (Constant 

volume). So, you put it all together into the material balance expression of input rate minus output 

rate equals accumulation rate( 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1.4.3 − 2). 

(Refer Slide Time: 11:58) 

 



We get ∆x∆y∆z
𝜕ρ

𝜕𝑡
 in the LHS equals (ρ vx)|x ∆y∆z - (ρ vx)|x+∆x ∆y∆z  is the input - the output term 

in the x direction,  (ρ vy)|y∆x∆z -(ρ vy)|y+∆y∆x∆z is the input - the output term in the y direction and 

(ρ vz)|z ∆x∆y- (ρ vz)|z+∆z ∆x∆y  is the  input - the output term in z direction , together in the RHS. 

Before that let me call this equation, 1.4.3 - 3.  

∆x∆y∆z
𝜕ρ

𝜕𝑡
 = (ρ vx)|x ∆y∆z - (ρ vx)|x+∆x ∆y∆z + (ρ vy)|y ∆x∆z - (ρ vy)|y+∆y ∆x∆z + (ρ vz)|z ∆x∆y- (ρ 

vz)|z+∆z ∆x∆y                                                                                                                       1.4.3 - 3 

                                                                                                   

What I would like you to do is divide the 1.4.3-3 equation throughout by ∆x∆y∆z and tell me what 

you get. This way we interact with each other and you pick up or you understand the derivations 

and the basis, a lot, lot better. These are very important. We are going to do a few of these things 

in depth and that will clearly show you that this is applicable in general to wherever you would 

like to apply it or at least it will tell you the limitations of it is application based on these 

assumptions we are doing this, in this case, there has been no assumption so far. 

 

Hopefully, you got 
𝜕ρ

𝜕𝑡
  on the LHS side. And if you divide by ∆x∆y∆z, for the first, ∆y∆z will 

cancel out, ∆x will remain in the denominator and this term will be the same. Similarly, for the 

second, ∆y will remain in the denominator and this term will still remain the same. For the third, 

∆z will remain in the denominator and this term will be the same. 

 

𝜕ρ

𝜕𝑡
 = 

1

∆x
{(ρ𝑣𝑥)|x  - (ρ 𝑣𝑥)|x+∆x } +  

1

∆y
{(ρ𝑣𝑦)|y - (ρ 𝑣𝑦)|y+∆y } + 

1

∆z
{(ρ 𝑣𝑧)|z - (ρ𝑣𝑧)|z+∆z}     

 

When we take the limit ∆x→ 0, ∆y → 0, ∆z →0, what do you get, I would like you to pause the 

video for some time, work that out and then get back to the video, see what you get, you will be 

very surprised or it is interesting when you work it up. See whether you got this. LHS,  
𝜕ρ

𝜕𝑡
 is fine. 

In the ∆x→ 0, ∆y → 0, ∆z →0,(when the volume is negligible) this becomes nothing but the 

definition of the derivative, in this case partial derivative . 

 



𝜕ρ vx

𝜕𝑥
  became the definition at the limit ∆x→ 0, 

𝜕ρ vy

𝜕𝑦
  became the definition of the derivative at 

∆y→ 0 and the limit ∆z → 0 resulted in 
𝜕ρvz

𝜕𝑧
. So, we have a nice compact expression here, we can 

make it even more compact. I am sure you have ideas already,  before that we will call this equation 

1.4.3 - 4. 

 

 
𝜕ρ

𝜕𝑡
= −(

𝜕ρ vx

𝜕𝑥
+

𝜕ρ vy

𝜕𝑦
+

𝜕ρvz

𝜕𝑧
)                                    1.4.3 –  4 

 

Vectorially speaking, can you recall this 
𝜕 

𝜕𝑥𝑖
 + 

𝜕 

𝜕𝑦𝑗
+ 

𝜕 

𝜕𝑧𝑘
 is nothing but your, ∇. And ρvx ρvy ρvz is 

nothing but ρv and you take the dot product of these vectors. So, this is a nice compact way of 

writing or vector rewriting the material balance expression  

 

𝜕ρ

𝜕𝑡
 = - (∇⃗⃗ .ρ𝑣 )                                                           1.4.3-5 

 

∇ and v being vectors. We will call this equation 1.4.3 - 5. This is the equation of continuity, 

  
𝜕ρ

𝜕𝑡
 = - (∇⃗⃗ .ρ𝑣 ) . How did we get this, we applied material balance to a fluid system in a 3-

dimensional right handed Cartesian coordinate space and nothing else, no other assumptions 

except we are looking at one component now or total mass whichever we want to look at it, total 

mass are one component let us say one component system, for one component system the equation 

of continuity is 
𝜕ρ

𝜕𝑡
 = - (∇⃗⃗ .ρ𝑣 ), very powerful equation from others. 

(Refer Slide Time: 16:46) 



 

Let  us reconsider this equation, 1.4.3 - 4, this equation  
𝜕ρ

𝜕𝑡
 = -(

𝜕ρ vx

𝜕𝑥
 +  

𝜕ρvy

𝜕𝑦
 +  

𝜕ρvz

𝜕𝑧
). See you 

have a ρ, which is not a constant we have not assumed that to be a constant with space. And you 

have vx. Both are functions of space in this case x, y, z whatever you want to call it. Therefore, this 

is a product of 2 functions. 

 

And you have the derivative of that (like 
𝜕ρ vx

𝜕𝑥
)  and you could expand, you could use the chain 

rule to expand that to get individual terms, let us do that, 
𝜕ρ

𝜕𝑡
 in the LHS equals  (the first function* 

the derivative of the second function plus second function * derivative of the first function), ρ 

𝜕vx

𝜕x
  + vx 

𝜕ρ 

𝜕x
 by chain rule. Similarly by chain rule that would be ρ 

𝜕vy 

𝜕y
  + vy 

𝜕ρ 

𝜕y
 , again by chain rule 

ρ
𝜕vz 

𝜕z
  + vz 

𝜕ρ 

𝜕z
. 

 

𝜕ρ

𝜕𝑡
=  −(ρ 

𝜕vx

𝜕x
  + vx  

𝜕ρ 

𝜕x
+  ρ 

𝜕vy 

𝜕y
  +  vy

𝜕ρ 

𝜕y
  +     ρ

𝜕vz 

𝜕z
  +  vz

𝜕ρ 

𝜕z
   )     

 

 

If you rearrange this we take all the velocities to the other side and retain the derivatives of 

velocities on the right hand side. Then we have - vx 
𝜕ρ 

𝜕x
, therefore it becomes + vx 

𝜕ρ 

𝜕x
 once it is 

added to the LHS (Or add + vx 
𝜕ρ 

𝜕x
 on both sides they cancel out, that is the way you actually do it) 



But we, you know, we are used to saying, take it to the other side. So, I will say the same thing 

here vx 
𝜕ρ 

𝜕x
 + vy 

𝜕ρ 

𝜕y
 + vz 

𝜕ρ 

𝜕z
  added to the LHS and −ρ( 

𝜕vx

𝜕x
 +

𝜕vy 

𝜕y
 +

𝜕vz 

𝜕z
     ) on the RHS.  

 

 

𝜕ρ

𝜕𝑡
+ vx

𝜕ρ 

𝜕x
+ vy  

𝜕ρ 

𝜕y
 + vz  

𝜕ρ 

𝜕z
=  −ρ( 

𝜕vx

𝜕x
 +

𝜕vy 

𝜕y
 +

𝜕vz 

𝜕z
     )             1.4.3 − 6  

I call this equation 1.4.3 - 6. 

 

Now, you recall the definition of our substantial derivative ( Equation 1.4.2-4, refer to previous 

lectures) following the motion of components for  
𝜕ρ 

𝜕𝑡
 + vx 

𝜕ρ 

𝜕𝑥
 + vy 

𝜕ρ

𝜕𝑦
 + vz 

𝜕ρ

𝜕𝑧
. Therefore, this is 

substantial derivative as written below. 

 
𝐷ρ 

Dt
= - ρ (∇⃗⃗ .𝑣 )                1.4.3-7,  

This is nothing but ∇ is  
𝜕

𝜕𝑥
 + 

𝜕

𝜕𝑦
 +  

𝜕

𝜕𝑧
, and take the dot product with v; vxi + vyj + vzk, you will get 

this nice compact expression when expressed vectorially (∇⃗⃗ .𝑣 ) . So, this is the definition in terms 

of the substantial derivative of the equation of continuity, this is expressed in terms of the 

substantial derivative. And we will be using these derivatives in many different ways. So, this is 

in terms of the substantial derivative, the earlier one was in terms of the total derivative and so on. 

This is also the equation of continuity, because we just used this equation here that we derived 

from the equation of continuity 
𝜕ρ

𝜕𝑡
  = - (∇⃗⃗ .ρ𝑣 ),we just expanded it using chain rule, and expressed 

it a little differently in terms of the substantial derivative to get a compact form. 

 

I would like to point out one thing here. Nowhere in this derivation did we assume the density to 

be a constant. So, just this standing out of this bracket does not mean the density is a constant, the 

density could be a function of both space and time, remember this, this is a very complete equation, 

no assumption so far. 

(Refer Slide Time: 21:02) 



 

What I am going to do next is or even before that, if the density is a constant. In this case, an 

incompressible liquid or incompressible fluid, liquids can generally become considered as 

incompressible fluids, the density does not change with respect to time. The time derivatives of 

density can go to 0. So, that is the case, then the equation of continuity becomes a nice, beautiful  

∇⃗⃗ .�⃗⃗�  = 0                                                1.4.3 - 8 

 

So, whatever the equation of continuity was earlier, when it is taken for an incompressible fluid, 

it becomes ∇⃗⃗ .𝑣  = 0, equation 1.4.3 - 8. Now by this and remember, the continuity equation, even 

if you do not remember it is fine, you use it a few times, that will become part of you. There is 

absolutely no problem, you can always refer to complex equations in this course, you will have it 

as you will have it in a way that you can refer to it by writing these equations. 

 

So, do not worry about that. Do not worry about remembering the complexities of math while 

writing the equation, to understand this better let us work out a simple problem. 

(Refer Slide Time: 22:27) 



 

This is a reflection or a practice point. The problem reads a design of a bioprocess device that is 

expected to handle a liquid presence the following description for vx , vy and vz, check whether the 

device is feasible at all. vx = k1(x
2 + y2), vy = k2(y

2 + z2), vz = k3 (z
2 + x2 ). 

 

So, this would come suppose somebody say something to you, you want to quickly check whether 

it is feasible. Very quickly, you will know it is even feasible, what the person is talking about, then 

you can make decisions on that and so on so forth, that would be one of the applications of this 

principle in the current scenario.  So, here you have vx = k1(x
2 + y2), vy = k2(y

2 + z2), vz = k3 (z
2 + 

x2 ) and this is the velocity field here that has been given velocity components here. And you are 

asked to check whether the device is feasible. 

(Refer Slide Time: 23:35) 



 

If the device is feasible the equation of continuity must be valid, because material balance has to 

be valid, that is the essential principle. So, it needs to be satisfied for any process to realistically 

exist. Here we have a liquid and therefore, we can take it to be incompressible. That is a good 

assumption. Therefore, for the given flow field, we need to just check whether  ∇⃗⃗ .𝑣  = 0, which is 

the equation of continuity at constant density. 

 

The problem becomes that simple right. So, let us do that, if you do that or pause the video here 

and you can do that, please. You would have gotten. You need to check, 
𝜕vx

𝜕𝑥
 +  

𝜕vy

𝜕𝑦
 +  

𝜕vz

𝜕𝑧
 = 0. This 

needs to be satisfied for the device to be valid or for it to realistically exist. Pause the video and 

try it out if you have not tried it out. , 
𝜕vx

𝜕𝑥
 +  

𝜕vy

𝜕𝑦
 +  

𝜕vz

𝜕𝑧
 = 

𝜕k1(x
2+y2  ) 

𝜕𝑥
 +

𝜕k2(y
2+z2) 

𝜕𝑦
 + 

𝜕k3(x
2+z2)

𝜕𝑧
. 

If you tried it out, you would have gotten, if you did this 2 k1x + 2k2y + 2k3z as the left hand side. 

Given this particular flow field, k1(x
2 + y2 ),you take the 

𝜕vx 

𝜕x
, you have x here. Therefore it  is k12x, 

y is not a function of x and therefore you just get 2k1x, here you get 2k2y, here you get 2k3z as 

derivatives. 

And therefore, these terms would have become 2k1x + 2k2y + 2k3z, which can be expressed as, 

taking 2 outside,  2 (k1x + k2y + k3z) and this needs to be equal to 0, 2 (k1x + k2y + k3z) = 0 for the 

device to exist. This, as you can see is satisfied only at very specialized spaces. In other words, 

this is the equation of a plane right, k1x + k2y + k3z = 0 is the equation of a plane. So, on that plane 

alone the device is valid right. 



 

In no other plane the device is going to be valid and therefore it is not a very good design of a 

device for practical reasons, since the validity is limited to a single plane, it does not seem to be 

suitable for design. This equation of continuity we derived in the rectangular Cartesian coordinate 

system. You already know that there are other coordinate systems that can be more easily used 

when you have different geometries. For example, you have the cylindrical geometry, you have 

the spherical geometry. If you try to apply the Cartesian coordinate system when you have curved 

spaces, you get a lot of trouble. And therefore, we have different equations for different coordinate 

systems. That is actually given in your appendix as I also mentioned later, let me continue with 

this, B is the equation for cylindrical coordinates and C is the equation for spherical coordinates. 

 

𝜕ρ

𝜕𝑡
+ (

𝜕ρ vx

𝜕𝑥
+

𝜕ρ vy

𝜕𝑦
+

𝜕ρvz

𝜕𝑧
)  = 0                                                              A 

 
𝜕ρ

𝜕𝑡
 +  

1

𝑟
 
𝜕(ρ r vr) 

𝜕𝑟
  +  

1

𝑟
 
𝜕(ρ νθ )

𝜕θ
 + 

𝜕(ρvz) 

𝜕z
 =  0                                         B 

𝜕ρ

𝜕𝑡
 +  

1

𝑟2  
𝜕(ρ 𝑟2 vr) 

𝜕𝑟
  + 

1

𝑟𝑠𝑖𝑛𝜃
 
𝜕(ρ νθ sinθ)

𝜕θ
 +  

1

𝑟𝑠𝑖𝑛𝜃

𝜕(ρv𝛟) 

𝜕𝛟
 =  0                   C 

 

What I would like you to do is make a copy of this or download this particular page and keep it 

separately keep filing these pages separately, either hard copies or soft copies it does not matter. 

You will need to refer to these equations in these tables, often in this course to work hard problems 

to understand various things and so on so forth. And it is good to do this it is best not to try to 

remember this, if you are good at remembering, fine. 

 

But you it is best to refer to this, because there is no point in missing out a term, just because you 

do not remember this. Please make a copy of this and keep it separately. As I said in the appendix 

of your book the first appendix, the ways by which you go from rectangular to cylindrical or 

rectangular to spherical are actually given. With that, let us end this lecture. Let us continue when 

we get back. See you in the next class. 

 


