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Welcome back, we are looking at the transport of the various physical quantities, when there are 

simultaneous presence of more than one driving force. This is the last chapter of this course and 

we have already looked at the mass flux in the presence of a concentration gradient and an electric 

potential gradient being present at the same thing and we saw various different applications of it. 

 

We also saw that it is the basis for us to perceive our world through our senses as well as to act 

based on the directions given by the brain and so on so forth as well as it is the electrophoresis as 

well as the industrial equivalent of that can be understood analyzed and used for design using this 

principle. Let us take things further today, today we would look at simultaneous concentration 

gradient and velocity gradient. 

 

Earlier it was concentration gradient and electrical potential gradient, today we are going to look 

at simultaneous concentration gradient and velocity gradient. 
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Let us again pose a problem of definite importance to us especially in these COVID-19 times when 

one of the difficulties that is caused by the virus seems to be the stripping away of heam from the 

hemoglobin or it destabilizes seems to destabilize hemoglobin and that caused that seems to cause 

a lot of difficulties, when people go through that one of the things that can be done is to oxygenate 

the blood after making sure that it has enough appropriate hemoglobin and so on and so forth. 

 

Not just in this situation in many different situations blood oxygenated where the blood is taken 

out of the body and a device is used to oxygenate the blood and that becomes essential, especially 

during open-heart surgeries and so on so forth that becomes essential. This is the basis of the heart-

lung machine or one of the important aspects of the heart-lung machine and so on. So, it has wide 

application. 

 

And that is based on in other words in the blood oxygenated at least the oxygenation part of it you 

will find the simultaneous presence of the concentration gradient and the velocity gradient, let me 

read the problem and then present this situation as a solution to this problem. Blood oxygenators 

are extensively used in hospitals when blood is taken out of the patient during surgical procedures 

or otherwise like now to be returned later to the patient. 

 

In a type of blood oxygenator the following film type, that is a blood film flows downward on a 

solid wall this is the wall that is given here, this is the blood that is flowing this is the blood film 



here, a thin blood film, I have just blown it up here for understanding purposes. So, thin blood film 

that flows over a vertical wall, while oxygen diffuses across the film and oxygenates the blood, it 

interacts with hemoglobin. 

 

And thereby the hemoglobin gets its capacity of 4 oxygen molecules and each hemoglobin 

molecule gets its capacity of 4 oxygen molecules ultimately and that is what happens to oxygenate 

the blood. Let us analyze the situation to derive an expression for the rate of oxygen absorption 

into the blood film. As you realize the rate of oxygen absorption is a key design parameter. 

 

You need to know whether you are able to restore the oxygen level in the blood to the previous 

levels or to the levels that are needed just by a simple pass through the oxygenator. So, that is the 

crux of the design of the oxygenator and therefore we are looking at that in this particular problem. 

So, here as I mentioned earlier you have simultaneous velocity gradient, you know this is a film 

that is falling over a flat plate. 

 

Earlier we saw an inclined plane now the plane is vertical, the only angling difference here pretty 

much in terms of the flow. Otherwise, the flow is a thin film that is flowing thin film of liquid in 

this case blood that is flowing and we saw that there was a velocity gradient here in the film the 

velocity closest in the layer closest to the wall will be 0 and in the layer that faces the air here its 

air oxygen is diffusing from the air. 

 

The layer that faces the air that will be the maximum that we already seen and so you have a 

velocity gradient in the x direction, x is this here and z also there are quite a few things that come 

about. So, you have simultaneous velocity gradient as well as a concentration gradient here. 
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Let us take the equations approach just to show you I am going to make a point at the end as to 

some of the limitations we might face with this approach and therefore let me take an equations 

approach to this. The continuity equation that we derived and used earlier is capable of handling 

simultaneous concentration gradient and velocity gradient okay. This is the way it was derived, 

why because we were trying to develop some standard means by which we could look at these 

systems of relevance. 

 

And these systems of relevance have velocities in them and therefore we considered a cuboidal 

control volume in a rectangular Cartesian coordinate system, where they were flows in all 

directions it is a 3 dimensional flow which can be looked at through its components in the x 

direction y x direction, y direction and the z direction okay. They were components of the flow, 

the flow is a vector as a 3-dimensional vector. 

 

So, the components are in the 3 different directions and so on and so forth. So, we had used that 

framework to derive the continuity equation okay. So, that was to make things a lot more complete 

in the terms of our approach, if you recall we had used pretty much the same approach across the 

various conserved quantities deriving the conservation equation for those conserved quantities. 

 

The equation of continuity for mass, the equation of motion for momentum, the equation of thermal 

energy using energy and the equation of charge conservation okay. So, pretty much the same 



framework was used. Only thing is therefore we needed to use that framework, our approach here 

was to look at primary driving forces first. So, that I felt was much better in terms of understanding. 

 

When we looked at the primary driving force for the mass flux then the velocity related term the 

convective term became a different driving force altogether okay and therefore we said that we 

will not consider that at all the equation had of that let me show that to you here, you know if you 

look at the continuity equation this was the continuity equation here and we had this term always 

in the continuity equation. 

 

Because of the way we derived it vx vy vz were set to 0 when we looked at mass flux due to diffusion 

alone okay. So, that was kind of deliberately done, so that our understanding becomes a little bit. 

So, now of course we have both these you know direct situation where there is fluid flow you will 

certainly have vx vy vz, recall that vx vy vz are the components of the fluid velocity yeah. 

 

So, that is this equation itself can handle it we do not need any other improved equation here and 

usually the rate of oxygen transport in the vertical direction, this is z direction, due to bulk flow 

there is a vz right due to bulk flow, it is much higher compared to the diffusion in the same direction 

okay, diffusion when it is again diffuse a flux is a vector, so it can occur in the x direction y 

direction and the z direction. 

 

So, hold on this is x, x cross y, so y is going into the screen here. So, x + y equals z so that is 

consistent with the right handed coordinate system. So, we have the x yeah we have the axial 

diffusion in the z direction also, nothing prevents that from happening. However, that is given by 

this term here 
𝜕2𝑐𝑖

𝜕𝑧2 , this the one that accounts for axial in the axis direction diffusion yeah. 

 

However, we have all these we are trying to simplify this. So, let us see how to simplify this is the 

complete equation. Of course this is for a Newtonian flow with constant Di whichever way you 

want to put it and let us see how to simplify this equation, because the axial diffusion, the diffusion 

in the z direction it is much, much less. The flux due to that is much, much less. Then the flux due 

to the velocity in the z direction, the convective flux in the z direction. 

 



We can ignore this term when it is considered in combination with this term, this term is the one 

that corresponds to the convection transport and this term is the one that corresponds to the 

diffusion transport both the z direction and since when they are added together if this is going to 

be much, much smaller compared to this, we can ignore this right. It is the same as saying the 

example that I gave you earlier. 

 

If one value is a 1000, the other value is a 1, whether you have a 1001 as a total value or whether 

you have 1000 which is very close 1001 anything, it does not make a difference okay. So, that is 

the argument here, we can ignore this term when it is added on to the stuff. However, in the x 

direction into the blood film, there is no convective transport right that is of course there is no 

velocity in this direction. 

 

There is no convective velocity, fluid is not moving in this direction, it is moving only in this 

direction, there is no convective transport and only diffusive transport happens okay. So, this term 

is certainly relevant. So, if you simplify the equation if we look at steady state ignore the reaction 

term, for now let us ignore the reaction term we will come back to this at the end. By assuming the 

reaction between oxygen and hemoglobin to be negligible for the time being okay. 

 

Sometimes these things are done to simplify and then you will have to evaluate it. I will spend a 

lot more time on that later. If we this A 2 from table 2.3.2 - 1 for continuity equation at steady state 

okay, at steady state the first term goes to 0, you know the time derivatives are set to 0, so the first 

term goes to 0. There is no vx, there is no x component of the fluid velocity. There of course no vy. 

 

There is no motion in this direction, there is only vz but yeah vz of course remains that is much 

greater than this also. So, this remains there is no diffusion in yeah there is this term of course is 

there because there is diffusion in the x direction, this is the x direction yeah. So, this case there is 

no diffusion in the y direction and this term we have ignored in comparison with this term okay 

and of course this is set to 0. 

 



So, when you put all these things together the only terms that remain are this vz
𝜕𝑐𝑖

𝜕𝑧
 equal instead 

of Di I am calling a Deff  because this is through a film, it is different may not be intrinsic diffusivity 

values that you find in tables and so on. 

 

So, this is what becomes the governing equation that we got by applying material balance to this 

situation are applying the equation of continuity to the situation. 

 

So, equation of continuity brings with it a strong base that we can use with confidence and therefore 

where we apply it to a situation we can take it to be valid without any further thought and that has 

given us this particular thing, see the confidence that we gain in this approach is immeasurable, 

that is the reason why we look at this. There are other downsides to it which I will come to in a 

little bit. Let us call this equation 6.2 - 1. 
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Of course we need boundary conditions to solve this, this is you know this is the second order here 

and you have a first order term but said here and so on.  



Remember the x is going from the edge of the film that faces the air inside. Therefore x equals 0 

is the gas liquid interface. So, this CAi is the oxygen concentration at the gas liquid interface 

equation 6.2 - 2. 

 

The other boundary condition is that 

 

 

at the wall where in other words x equals delta the thickness of the film oxygen cannot penetrate 

the wall right. So, if it cannot penetrate the wall for a physical reality to occur the concentration 

profile there needs to go through a maxima or a minimum okay. That is only way it can happen. 

If this is their then this condition will not be valid, oxygen cannot penetrate the wall cannot be 

represented. The concentration in the deoxygenated blood that is entering or entering this region 

at the top of the plate, it flows like this and then drops where our point of analysis start is at the 

top of that place where it gets oxygenated. 

 

And that is what we call as z equals to 0; C A equals C A0 the oxygen concentration in that 

deoxygenated blood entering the top of the plate equation 6.2 - 4. Let us consider a thin film that 

is uniform, that is a good assumption, then the situation is comparable with the flow over an 

inclined surface, you recall the situation in the momentum balance chapter, the moment of flux 

chapter. Bostwick viscometer that is the first big example that we considered. 

 

In fact we develop we looked at it using shell balances and then we applied the equation of motion 

to show that equation of motion gives the answer in one step right. So, that is the Bostwick 

viscometer and so in comparison with that can go back and compare vz is not a function of z okay, 



we are looking at the region where the flow is well developed okay. So, it means the top point may 

be may not be the entry directly into the thing. 

 

So, there might be some distance there where there are intense effects. So, somewhere in the 

middle where the flow has stabilized okay, the flow is very developed now. So, that you can use 

this condition vz is not a function of z, vz does not depend with z. Of course it depends with x, in 

other words at a particular x vz is the same at all this z and let us call it equal to v0. 
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Now we prefer to work with non-dimensional variables it makes our solution general that we have 

we have already seen many examples so far.  

 

In terms of the non-dimensional variables the differential equation and the boundary conditions 

can be written as I would like you to pause the video here, go back substitute these do the various 



derivatives and so on so forth. Substitute these into the differential equation that we had earlier 

which was this. 

 

And the boundary conditions which are these, the differential equation which is this and the 

boundary conditions which are these and come up and transform the equations and the boundary 

conditions into non dimension variables. Please do this is one of the exercises that we do , take 

some time whatever time you want that is perfectly fine, time does not matter. So, pause the video 

here okay. 

 

 

 (Video Starts: 21:19) (Video Ends: 21:45). So this is what we have here okay. 
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If we use the separation of variables method you need to go back to your math course and pick it 

up. Let me again remind you that this is not a course in math and therefore any of these involved 

aspects you need to go back to your if you are unclear about it you need to go back to your math 

course. I will give you some basic things, so that the flow in going from one step to another is not 

broken. 

 

But this calls for a certain elaborate manipulation and therefore you need to go back and check. 

 

This is the basis for our separation of methods where a separation of variables method equation 

6.2 - 12 and if we had seen this when we looked at the case of unsteady flow okay. 

 

Recall flow in a pipe in a cylindrical pipe that is set in to flow at time V equals 0 and then we were 

looking at the unsteady state region or unsteady state initial times before which it became steady 

state. So, that same it will go back to the solution the solution would be similar the procedure 

would be similar, if you do that this could be  

 

 

And this you must know from your math course which is a prerequisite for this course. So, if you 

do this and even if you do not know does not matter you can go and pick it up now that is all, it 

does not really matter, you just need to spend a little more time in picking up these things if you 

have either forgotten or you have not you know internalized these aspects of the course, the 

previous course okay, using the boundary condition 1 the cosine term would go to 0. 

 



 

This condition needs to be valid okay. 
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Now you need to know something about the orthogonality of functions, this again you need to pick 

up from your math course. Let me very briefly tell you what that is to juggle your memory and 

then set you back to your math course,  

 

 



So, the product of those 2 functions you integrate them over this interval a to b then that has to be 

equal to 0, that is when 2 functions are said to be orthogonal. So, you look at the orthogonality 

property of the functions  

 

whatever I presented you in the last 2 slides who take you quite a bit of time to work on ok, do not 

underestimate that, it is just that it is not an inherent aspect to the course not gone into every single 

step of that. 

 

But this will give you a solution and I am also trying to make a point here okay, this is a solution 

I present to you the solution, the main point that I am going to make from the physicality of the 

various things is going to come up next okay. Again the complexity in math is not the focus of this 

course equation 6.2 - 15. 
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Now let us take the height of the film to be H and B to be the wall width in this direction, the rate 

of oxygen absorbed, this is what we wanted to find out WA in terms of the regular dimensionless 

variables would turn out to be this rate, this is straight what you have the flux here and you have 

the variation with respect to the area in this direction.  



 

This is the equation 6.2 - 7, good so we got a solution, we had a representation of the situation here 

the physical situation of the blood oxygenator, we wrote a model for it, a mathematical model for 

it, we had made some assumptions as a part of the model okay. These are very standard aspects of 

model development for various different things analysis design operation. 

 

However, let us discuss this. This is also an a part of the model development process, we have 

developed a model, sometimes a model fits the data very well and therefore we say are a 

representation of the various important aspects of the model has been well carried out in a 

mathematical sense okay or in other words a model is a good enough representation of the actual 

system, it captures the essential features of the actual system. 

 

That is the purpose of the model at any time. However, here if you see the okay before that the 

average oxygen concentration if you derive an expression it will turn out to be this. I let you read 

this C average would turn out to be this 6 to 18, the model here the oxygen absorption rate whatever 

you get out of this model it falls short in the agreement with experimental data. So, you have a 

model you always need to go back and check with experiment. 



 

Because you have made assumptions and hoped that you have picked up the essential features are 

the most important features of the process in your model, you need to check whether you have 

actually done that and the only way to check it is compare it with experiments. Therefore the 

checking is an inherent aspect of any mathematical model development. So, in this case it was 

found that the model falls short in agreement with experimental data. 

 

This they found out later was because the reaction between oxygen and hemoglobin is not been 

considered well, it is you know every molecule of hemoglobin takes in 4 molecules of oxygen 

when it is saturated okay. So, that reaction aspect has been neglected in this model and also the 

blood has been approximated as in Newtonian fluid right. That is a basis for us to choose the 

second equation the easier equation to work with. 

 

So, both these have turned out to be important maybe or one of these has turned out to be important 

we do not know at this stage. So, what is normally done is if you need to take this route then you 

go back improve your model, then see then compare it with the experimental data, see whether it 

captures the experimental data and of course the implicit assumption is that an experienced person 

has done the experiments. 

 

It is there are whole lot of things to do on the experimental side to ensure that the data that has 

been obtained is indeed reliable, that is a totally different aspect of it. So, this essentially happens 

in any model development process mathematical model development process okay. So, I think we 

need to stop here yes we have completed this part, we will stop here, we close the lecture here this 

lecture and then when we meet in the next class we can take things forward see you then. 


