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Welcome back, let us continue, we started looking at mass flux in the previous class. We looked 

at some formulations for the flux itself in terms of rather fundamental quantities density, velocity 

concentration and let us take things further. In this class we are going to look at something called 

a shell balances approach to mass flux to get useful aspects from that analysis. 

(Refer Slide Time: 00:55) 



 

 

Generally speaking, there are 2 approaches to solve these problems, the problems that involve 

motion of various substances which are plenty, plenty in engineering practice. There are two broad 

approaches, first is called the shell balance approach and second is the application of the relevant 

conservation equation directly. Both have good merit let us look at them and then we will talk 

about them. 

 

The relevant conservation equation is nothing but the equation of continuity in the case of mass 

conservation. That is the only thing that we have seen so far and so I am going to look at that. 
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But first we look at the shell balance approach, what are shell balances. Look at the term, things 

will start falling into place. Shell balances, balances of conserved quantities are made over a 

representative shell in the system those are called shell balances. This representative shell what is 

that? The shell represents the geometry and a concentration, for rectangular Cartesian coordinate 

systems the shell could be a cuboid we will see this in detail next. 

 

For cylindrical systems, the shell is an annular cylinder. You have a cylindrical system you are 

going to use cylindrical set of coordinates. So, the shell over which you are going to do your 

balances is going to be an annular cylinder. And for spherical coordinates the shell could be an 

annular sphere, spherical coordinates - annular sphere. So, essentially shell is the space over 

which we do balances and that space is differential. 

 

And therefore, the variations are captured nicely when you do balances over that shell and then 

when you integrate you get the entire picture, it is as simple as that. It will become clearer as we 

go along. Now, we are going to consider a uniform membrane, we will directly jump into systems 

of relevance to us, a uniform membrane. 

 

(Refer to the diagram on the video).In that membrane let us consider a shell of thickness ∆x through 

which diffusion occurs normal to the surface area. This is the membrane, indicated by these thick 

lines, of thickness L. And the area is perpendicular to the plane of the motion of the species. So, 

the area is somewhere here, we are going to consider a shell because this is to begin with a cuboid 

I have just drawn with 2 dimensions here, you could extend the third dimension and consider it a 

cuboid. 

 

You take a thin shell of thickness ∆x, so that is represented as x here and x + ∆x here, this is very 

thin, I have just expanded the ∆x to show you, so, that you can see it. In reality, the ∆x is very, 

very, very small. And in three dimensions this is going to be a cuboid of the same dimensions as 

that of the system or the membrane but with a thin thickness. 

 

So, that is essentially the shell and we are going to do balances over the shell, mass balances over 

the shell, that becomes a system. 
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So, our mass conservation equation as you all know which can be used blindly is 
𝑑𝑚

𝑑𝑡
 = ri-ro+rg-rc. 

You could consider both these together and call it the net production rate, rgeneration - rconsumption as 

some sort of a net production rate. Now a material balance, if you write over the shell on the 

component i which is entering at x and leaving at x + ∆x. 

 

So, here is the shell you have x here,  x + ∆x here, the component i is entering in this direction at 

x and leaving at x + ∆x that is the situation here. So, if you consider that in terms of the molar 

fluxes of i we could write this as 
𝑑𝑚

𝑑𝑡
. So, 

𝜕𝑚

𝜕𝑡
 you know since it could vary with time and space i 

have just given the more general partial derivative here. 

  

Concentration(ci)  = moles /volume,  

moles= mass(m)/molecular mass(M.W) so we get mass(m )= moles*molecular mass(M.W) 

Thus, Concentration(ci)* molecular mass(M.W) = (moles *molecular mass(M.W))/Volume = 

mass/volume( which is nothing but mass(m) per volume.) So, if you multiply it by volume(𝐴. ∆x) 

throughout, we get mass alone. (Volume= area * thickness) 

Mass(m) =  Concentration(ci)* molecular mass(M.W)*Volume 

Thus , we get 
𝝏𝒎

𝝏𝒕
=

𝝏𝒄𝒊∗(𝑴.𝑾)

𝝏𝒕
. 𝑨. ∆x on the LHS. 

 



So, the molar flux(Ni) of species i at x times the molecular mass(M.W) will give you the mass flux 

(mass flux= molar flux * molecular mass) and that is the reason for this combination, (Ni) at x 

times area (A) and molecular weight(M.W) minus the output rate, (Ni) at x + ∆x times area (A) 

and molecular weight(M.W). As mass rate = mass flux*area. Multiplying mass flux with area gives 

mass rate. 

 

RG - RC in the regular reaction rate terms, is denoted by Ri. This is in terms of moles, typically we 

write it in terms of moles for reaction rates. Therefore, we need to multiply it by the molecular 

mass(M.W) times the volume(A∆x) because this rate Ri is normalized with respect to volume. And 

therefore, we need to multiply by the volume to get mass per time. 

 

𝝏𝒄𝒊

𝝏𝒕
 (M.W)A ∆x = Ni|x (M.W)A   –  Ni|x+∆x (M.W)A   +  Ri (M.W)A ∆x           2.3.1-1 

Where Ri= Ni|x (M.W)A   ,  Ro= Ni|x+∆x (M.W)A   and  Rg-Rc= Ri (M.W)A ∆x            

Each of the terms above are in terms of mass per time. 

 

The idea here is to get mass per time for each of these terms and therefore we took whatever we 

had concentration per time and converted that into mass per time by multiplying by the molecular 

mass and the volume here(
𝜕𝑐𝑖

𝜕𝑡
 (M.W)A ∆x). Here we had a flux, the molar flux Ni , we converted 

it into mass flux first and then mass rate by multiplying it with M.W and A respectively. And then 

similar thing that we did here, for Ri we did the reaction rate which is in terms of the concentration 

on a volumetric basis multiplied by the molecular mass to get mass on a volumetric basis. Then 

we multiplied it by the volume of the system, A times the ∆x, the cuboidal volume. So, that each 

of these terms is mass per time, that is the whole point. And that is what we normally do when we 

write balances make a note of that, this is equation 2.3.1 - 1.  

 

Now if we divide the equation 2.3.1-1 throughout by molecular mass(M.W) and area(A), constants 

present on all the terms. So, you can divide throughout, can you divide throughout and tell me 

what you get, pause the video here come back after you get the expression then will continue ego 

ahead please. And now if you divide by ∆x throughout here you are left with 
𝜕𝑐𝑖

𝜕𝑡
  on LHS. Here 

you are left with (Ni|x - Ni|x + ∆x / ∆x) and Ri on the RHS. Do you recall something familiar here 



you soon well I give you a hint plus of course only Ri remains here ok. This if you recall is nothing 

but the definition of a derivative when the limit of ∆x tending to 0 is taken. 

𝜕𝑐𝑖

𝜕𝑡
= (

𝑁𝑖|𝑥 − 𝑁𝑖|𝑥 + ∆𝑥 ) 

∆𝑥
) + Ri 

If you do that we get go ahead please, pause, do that and get back. If you do that you get 
𝜕𝑐𝑖

𝜕𝑡
 equals 

minus because the definition of the derivative is (x + ∆x )- x divided by ∆x. Here you have just the 

negative of that therefore - 
𝜕𝑁𝑖

𝜕𝑥
  + Ri ok, we will call this equation 2.3.1 - 2. 
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Here the flux is purely diffusive, it is just diffusing, there is no other driving force that is causing 

this motion. Therefore, Ni is nothing but Ji star only the molar flux and we have an expression for 

molar flux in terms of Fick’s first law, molar flux is - Di 
𝜕𝑐𝑖

𝜕𝑋
. Strictly speaking, it is Di( - 

𝜕𝑐𝑖

𝜕𝑋
) but by 

writing this we understand what we mean by - Di 
𝜕𝑐𝑖

𝜕𝑋
 

 



 

 

If you consider that there is no reaction, that term Ri disappears indicating  
𝜕𝑐𝑖

𝜕t
 = Di

𝜕2𝑐𝑖

𝜕𝑥2 , we will 

call this 2.3.1 - 4. And this is Fick’s second law, Fick’s first law is the constitutive equation, the 

relationship between mass flux and the concentration gradient. This the variation of concentration 

with time on this side(LHS) and the variation of concentration with space on the RHS. So, that 

way it is very powerful variation with time is related to variation in space through this diffusion 

coefficient or diffusivity Di. 

 

Under steady state conditions you know what steady state the properties of interest at a point do 

not vary with time, which means effectively any time derivative goes to 0. So, this time derivative 

goes to 0 and what do you get? pause, do that and get back, yeah you would get Di 
𝜕2𝑐𝑖

𝜕𝑥2  = 0. Very 

simple, beautiful expression, Di 
𝝏𝟐𝒄𝒊

𝝏𝒙𝟐  = 0 and this is equation 2.3.1 - 5. 

 

In three dimensions we looked at one dimension to get a physical feel of things, we can extend this 

very easily to three dimensions. It is going to be 
𝛛𝐜𝐢

𝛛𝐭
 = 0 = Di 𝛁𝟐𝐜𝐢, where  

 

𝛁2𝑐𝑖 =
𝜕2𝑐𝑖

𝜕𝑥2  + 
𝜕2𝑐𝑖

𝜕𝑌2 +
𝜕2𝑐𝑖

𝜕𝑍2   ok. So, three-dimensional variation is brought in here, so this is Fick’s 

second law in three dimensions, equation 2.3.1 - 6 ok. 

 



 

 

So, we will stop here we have covered quite a bit of new information here, constitutive equation, 

Fick’s first law is an example. Then we looked at that was previous class, in this class we looked 

at shell balances and shell balances we wrote for membrane. Then representative shell which turns 

out to be a cuboidal shell in a membrane. And then we derived the Fick’s second law which is a 

relationship between it is the time variation of concentration. And the space variation of 

concentration in the system ok, we will continue in the next class, see you in the next class. 

 

 


