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Welcome to MOOCS course Mechanical unit operations. The title of this lecture is 

“Motion of Particles Through Fluids”.  
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Motion of particles through fluids we have seen most of the multi-phase flows, so 

wherever mechanical unit operations are involved or even some unit processes are 

involved then we have seen that there is a kind of relative motion between solid and 

fluids and then that relative motion is very much important in designing this contacting 

equipment wherever this unit operations are taking place or unit processes are taking 

place. 

So that relative velocity can also be represented in terms of some kind of a force balance 

one can do the force balance and then report it as in terms of a drag co-efficient or drag 

force, right. So that is what we have seen. So we have seen in the previous lecture 

different types of applications and then how much important is relative motion between 

fluids and solids especially the multi-phase flows associated with the mechanical unit 

operations. 



We have already seen many mechanical separation processes involve the movement of 

solid particles or liquid drop through a fluid so there may be a relative motion between 

a fluid drop or a solid particle or kind of thing, in a kind of another a fluid so that is also 

possible not just not necessarily only solid particles sometimes liquid drops are also 

translating in a given fluid. So that those applications we have seen but however we see 

a few more applications now. 

Some examples like elimination of dust and fumes from air or fume gas, then removal 

of solids from liquid waste, recovery of acid mists from the waste gas of an acid plant. 

So from the acid plant whatever the acid mists are there, there may be a few releasing 

them in the air as it is so that is going to be very dangerous to the environment so then 

what you have to do you have to separate them and then clean that air and then then 

only the fluid you can release into the atmosphere. So these are a few applications. We 

have already seen several applications. 
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Now what we see “Mechanics of a particle motion”. So movement of particle through 

a stationary or a moving fluid requires an external force acting on the particle. In 

general, so you need to apply some kind of external force, that may be based on the 

gravity- external force may be gravity force or it can be a kind of centrifugal force or it 

can be a kind of a electric field or it can be due to their magnetic field or it can be 

because of some kind of pressure difference etc. So but there should be some kind of 

external force so that a particle can move through a stationary or a moving fluid. 



This force may come from density difference between the particle and the fluid as I 

mentioned or it may be the result of electric or magnetic fields. So whatever the force 

is, that arise due to the density difference in general or maybe we can say that a 

gravitational force or centrifugal forces, so in this particular lecture we are considering 

only two two types of external forces while developing this motion of a particle through 

fluids. So those two types of forces are the gravitational and centrifugal forces. 
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Now, “Forces acting on a particle moving through a fluid” that is what we are going to 

see. So what we are considering here, we are considering only external force due to the 

gravitational forces or centrifugal forces. Those two kind of external forces we are 



considering. But when a particle moving through a fluid then it may also be expecting 

experiencing other forces like buoyant force which acts parallel with external force but 

in opposite direction. Then drag force, which appears whenever there is a relative 

motion between the particles and fluid. And then this drag force acts to oppose the 

motion and acts parallel with the direction of movement but in the opposite direction, 

in general, if kind of a one-dimensional flow. 

But, in general, direction of movement of the particle relative to the fluid may not be 

parallel with the direction of external and buoyant forces and then the drag force under 

such conditions makes an angle with the other two, so because of that one we need to 

find out the individual component of the drag force rather than a having a kind of total 

drag force, directly. So this kind of cases where drag force making an angle with the 

other two kind of forces is called as a kind of two dimensional force, in general, and 

then drag must be resolved into the components. 

Like you know, individual pressure drag component you have to find out, individual 

friction drag component you have to find, something like that in the previous lecture 

when you are defining the drag forces or a developing relation for the drag forces we 

have taken a surface like this.  So this surface like this. And then we have taken a kind 

of a element on the surface. So, and then fluid motion is coming in this direction, U 

naught. So now the drag force is the force acting on the solid object exerted by the fluid 

in the direction of the flow direction in the direction of the flow. 

So but now the flow direction in horizontal and then this surfaces are making an angle 

with this surface. So if you take this angle like this so this angle something like you 

know making some angle so that angle based on that angle we are derive the 

components. So, since it is making some kind of angle with this surface, you know, 

what we have, we we will have in general different components. You have to find out 

a kind of a pressure component normal to the surface and then you have to find out a 

tangential component like this, so whatever the pressure force and then 𝜏𝑤𝑑𝐴, let us 

say this is the dA is the area of the element that we have taken and pressure force would 

be PdA and then shear force would be 𝜏𝑤𝑑𝐴 and they are in two different directions. 

So this is the flow direction but the PdA is acting in this direction and then 𝜏𝑤𝑑𝐴 is 

acting in this direction. Force due to the pressure and force due to the shearing action 



are acting in two different directions compared to the this direction. So that is the 

reason, you know, this kind of flows we called it a kind of two dimensional flows and 

then we have to obtain their kind of the components, we have to obtain the components 

of these forces acting in the flow direction. 

So, now in the horizontal direction we have seen that this is kind of a this force is there, 

so then based on the angle we have seen, so here also we have seen based on the angle 

how much is this you know things that force it acts acting in this direction so that also 

we have seen. So we have seen this tau w and then this angle is a kind of 90- α. So this 

this component would be 𝜏𝑤 sin (90-α)  dA. 

So, that is 𝜏𝑤cos α dA is in the in the other direction, in this direction that is acting 

whereas in this direction whatever that acting is 𝜏𝑤cos (90-α)  dA, so this is 𝜏𝑤 sin α 

dA. So, the wall drag that is acting in the flow direction for this element is tau w sin 

alpha. Similarly, here if it is (90 –α) degree so then it will be alpha, so then this would 

be this component would be P dA sin α and then this component in the flow direction 

would be P dA cos α.  

So this P cos α dA is going to be the form drag that is acting in the flow direction though 

the element is not having a kind of one dimensional flow, that is, the flow direction and 

then the alignment the angle that is making with the flow direction, this element they 

are not not same, but then it is a two dimensional flow. That is the reason it is a two 

dimensional flow. Under such conditions we have to find out a kind of a individual 

components of the drag force and then add them together to get a kind of a total drag 

force. 
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But in this lecture what we will do we will be considering only one dimensional motion 

of particle through fluid. So that to avoid complications and then have a kind of 

simplified analysis, because whenever there is a two dimensional flow it is it becomes 

very difficult to get the results analytically and then one may need to go for semi-

analytic or semi-numerical or numerical results or by experimental approach only. So 

so one dimensional motion of a particle through fluid if we consider that we can do 

analytical analysis, simplification and then apprehend the drag forces total drag force 

how much it is a how much total drag force acting on a particle when it is settling in a 



kind of gravity motion or centrifugal motion that is what we are going to see provided 

the motion is one dimensional motion. 

Let us consider a container, very large container. In which we are settling a particle of 

a small particle size. So large container we have taken in order to have a kind of 

unbounded motion, unbounded motion of particle in infinitely long cylindrical column. 

This we are trying to do because in order to have a kind of free settling conditions, in 

order to have a free settling conditions. So this is very much important because the 

analysis that we are going to do that is only for free settling condition.  

How to make sure that the settling the particle settling conditions and the free settling 

condition you can make sure by having a unbounded flow and then no other particles 

nearby, nearby there are no other particles and then container wall is also far away from 

the particle. By taking these things, we can make sure that a kind of a the particle is 

settling under free settling conditions without any kind of hindrance from the 

neighboring particles or without any kind of hindrance from the container wall. 

So now this particle it is settling. It is when it is settling, initially the acceleration of the 

particle, acceleration of the particle may be there. So that, it maybe settling, you know, 

with a certain velocity but you know 
𝑑𝑢

𝑑𝑡
. Let us say u is the velocity of a particle that is 

settling. When it is settling, you know, initial conditions, 
𝑑𝑢

𝑑𝑡
 is not 0 actually. But if you 

provide you know free settling conditions without any hindrance and then without any 

neighboring hindrance because of the neighboring particles or wall of container.  

So eventually what happens what will happen at certain location when it reaches, a kind 

of a free settling conditions is achieved. So from here onwards, what you have  
𝑑𝑢

𝑑𝑡
= 0. 

So under the free settling conditions and then what we can expect that you can expect 

that 
𝑑𝑢

𝑑𝑡
 is going to be 0 and that is going to be there. You know again, not upto the entire 

of bottom when it reaches the bottom of the container but to some extent, some extent 

𝑑𝑢

𝑑𝑡
 remains as 0. So this is the 

𝑑𝑢

𝑑𝑡
 is 0 that means u is maximum here.  

So maximum attainable velocity. So under the free settling conditions what we can have 

the particle maximum attainable velocity whatever is there. So that velocity we call it 

as Ut or terminal velocity or terminal velocity or free settling velocity that is what we 



call it. So this terminal velocity we are going to use this analysis. So this terminal 

velocity Ut is related to the drag co-efficient that is what we are going to see now, how 

it is related and all those things that is we are going to develop now relations.  

So this is the basically the assumptions or the simplification of the flow condition that 

we are taking. So what we are taking? We are taking a infinitely long cylinder filled 

with a kind of a liquid, some kind of liquid in which you are, you are trying to settle 

this particle or you are trying to find out the velocity of the particle or you are trying to 

find out the drag experienced by this particle when it is settling in a column of liquid. 

So, you are taking infinitely long column large diameter and a large length large height 

cylindrical column you have taken and then you filled kind of liquid and this liquid you 

are allowing one small particle settle down. 

When it is settling, so under the initial conditions settling conditions, du by dt may not 

be, indeed it will not be equal to 0, that is, from one location to the other location when 

the particles fall in the velocity will not be remain same. 

Let us say from this is the t, t is equal to 0, at t is equal to t1. It may be coming here. So 

whatever the UN is there that is not the same by this time with (t2) U2, that is not same 

as the U1. So at t3 let us say particle reach to this point. So that means at t3 the whatever 

the velocity let us say U3 that is not the same with U2. So that means from distance and 

from time the particle the velocity the settling velocity is different in this region, and 

this is known as the non free settling region, but after certain distance what happened 

particle attains a kind of free settling conditions where the particle, you know the 

velocity is found to be independent of the time and an independent of the distance. 

Whether you measured at this location, at this location, at this location or at this location 

as long as the free settling or terminal velocity conditions are prevailing it will be having 

the same velocity. So that is the reason 
𝑑𝑢

𝑑𝑡
= 0. So that means when this 

𝑑𝑢

𝑑𝑡
 becoming 

0 that condition maximum velocity condition prevails that maximum velocity is known 

as the terminal velocity. So this is what we are going to develop the relations by the 

between this Ut, CD and another kind of things, the other kind of forces that are acting 

that I mean like we are making we are going to make a force balance and then trying to 

develop these relations suitable relations. 



So now the same thing so whatever we have discussed till now there is a particle but I 

have drawn in a kind of smaller geometry so that to include the other terms also.  So 

now we have a container, we have a particle and then that is settling with the gravity. 

So the gravitational force Fg is were acting downwards here. So there will be a kind of 

buoyance force that will be acting opposite to the whatever the force is causing the 

motion. So buoyance is our acting opposite to Fg here. So that is buoyant force Fb is 

acting opposite to Fg. Now this particle when it is settling here, so the fluid is offering 

some kind of resistance. 

It is not allowing to it will try to resist it will try to resist the particle motion. So that 

resistance is known as the drag force. So that drag force will also act opposite to the 

direction of the movement. So that is FD is acting in the opposite direction to Fg as well 

here, so the same thing if you take a generalized one, so like in not necessarily that flow 

is a kind of article, once if you have a kind of flow like this and then then there is a kind 

of some external force Fg which is causing this particle motion in a kind of horizontal 

direction as shown here. 

So then it is exactly the similar way, balance has to be done exactly the similar with. 

Only thing that Fg is replaced by Fb so what we do is start with the generalized one with 

Fe then for Fe we substitute Fg if you wanted to know the motion because of the 

gravitational force and then for Fe we substitute Fc the centrifugal if you wanted to 

know the motion of the particle because of the centrifugal force.  

So let us assume mass of the particle m is constant whose density is 𝜌𝑃 the projected 

area of the particle is Ap. So for simplification have shown a kind of spherical particles 

as a kind of circle but whichever particle you take from  the project area of that particle 

you have to take that is let us take let us say Ap be, first generalized one and then we 

apply the case for the kind of spherical particles. 

Now consider a particle of mass m moving through a fluid under the external force Fe, 

now let the velocity of particles relative to the fluid be u, then the buoyant force on the 

particle is Fb as I have mentioned. Drag force offered is FD, then acceleration of particle 

is 
𝑑𝑢

𝑑𝑡
. Now what we try to do, we try to find out what is this Fb? What is this FD? And 

then what is this Fe, then we make this balance like (Fe – Fb – FD) is equal to the net 



force, that is 𝑚
𝑑𝑢

𝑑𝑡
. Then we simplify this equation in order to get the free settling 

velocity Ut.  
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Remember all these things are for the free settling velocity condition as I explained just 

before. So force balance net force 𝐹 = 𝑚
𝑑𝑢

𝑑𝑡
 or 

𝑑𝑚𝑢

𝑑𝑡
  so in our case the mass of the 

particle is constant. So that means 𝑚
𝑑𝑢

𝑑𝑡
= 𝐹𝑒 − 𝐹𝑏 − 𝐹𝐷. This is the over all force that 

is acting on the particle. That is external force causing the motion minus the buoyant 

force that is working opposite direction to the external force and then drag force which 

is offering resistance to the motion. 

So 𝐹𝑒 − 𝐹𝑏 − 𝐹𝐷 that is the net force that is acting on the particle at a given instant. And 

then that should be crystal the 𝑚
𝑑𝑢

𝑑𝑡
. So now we have to find out what is this Fe, what 

is this Fb whatever what is this FD. That is external buoyant drag forces. Individually 

we have to find out, we have to substitute here in order to get an expression for this u 

in terms of a known parameters, like 𝜌𝑚𝑢𝜌𝑃  and then Dp particle diameter etc that we 

are we have to do, first we do for a kind of generalized case then we take a spherical 

particle case.  

So external force if the acceleration due to the external force 𝐹𝑒 = 𝑚𝑎𝑒 should be 

external force that is quite clear and then drag force we have already seen the definition 



𝐶𝐷 =
𝐹𝐷

𝜇𝑃
⁄

1

2
𝜌𝜇2

. This is what the definition of the drag coefficient that we have seen in the 

previous lecture. So from here FD we can write in terms of CD as 
𝐶𝐷𝑢2𝜌𝐴𝑃

2
. So out of 

these three forces, external force and then drag force we have an expression already. 

Now we have to find out the expression for the buoyance force.  
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So buoyancy force is the mass of the fluid displaced multiplied by the acceleration from 

the external force. So let us say this particle we are having here. So, how do this is the 

only thing that here we have to find out mass of the fluid that is displaced. So let us say 

this is the particle here that we have taken, now, when it is coming here just you know 

underneath it like this.  

So that means whatever the fluid that was here, you know initially particle was here, 

when it is just falling down. Let us say it has come here. So whatever the fluid that was 

present here this shaded portion that fluid is being replaced by particle. So whatever the 

volume was there here that volume is replaced by the particle. So and that volume is 

same as the particle value. So that is 
𝑚

𝜌𝑝
. So this this is the volume of the fluid displaced 

by the particle. This is the volume of the fluid 
𝑚

𝜌𝑝
 is the volume of the fluid displaced 

by the particle.  



Because it is same whatever the volume of the particle is that that much volume only 

that is going to that much volume of the fluid only that particle is going to replace. So 

𝑚

𝜌𝑝
 whatever the volume of the particle is the same volume up that much volume of the 

fluid is being replaced by the particle, but we know we need to know mass of the fluid 

displaced. So now this is the volume of the fluid displaced by the particle if this volume 

of the fluid if you multiplied it by the density of the fluid then you will get the mass of 

the fluid that is being displaced by the particle so (
𝑚

𝜌𝑝
) 𝜌. 

This quantity if you multiplied by the ae, acceleration from external force then we have 

this buoyant force, this is according to the Archimedes principle. That is buoyant force 

is the product of the mass of the fluid displaced by the particle and the acceleration 

from the external force, so volume of particle (
𝑚

𝜌𝑝
) is the volume of fluid is being 

displaced by the particle. So mass of the fluid displaced would be (
𝑚

𝜌𝑝
) 𝜌, now buoyant 

force should be (
𝑚𝜌

𝜌𝑝
) 𝑎𝑒, that is acceleration from the external source.  

So now we have this buoyant force also, so now if we substitute these things in the 

force balance equation will get the final expression for the velocity. So here this rho is 

nothing but the fluid density, 𝜌𝑝 is nothing but the particle density. So when you 

substitute 𝑚
𝑑𝑢

𝑑𝑡
 is same in the left hand side the force balance equation. This is the 

external force, this is the buoyant force and this is the drag force.  

So that means m if you take to the right-hand side and then from these two terms if you 

take m common, so then you have 𝑎𝑒
1−𝜌

𝜌𝑝
 we are doing you will get something like 

𝑎𝑒
1−𝜌

𝜌𝑝
  if you do LCM, so then you will get this one. So whatever this m is there here 

so that m that m will be cancelled and then there will be m will be coming out here.  

 

 

 



 

(Refer Slide Time: 25:02) 

 

So this is this second term is remaining same only this m is coming in the denominator 

here. Now motion from gravitational force, this is a kind of generalized kind of 

expression now till now here we have not done any kind of testing. We are not done 

any kind of specified derivation with respect to the external field generalized external 

field we have taken now. Let us take external field is gravity that is the particle is 

settling due to the gravity. So in place of ae you should substitute g acceleration due to 

gravity then you will get 
𝑑𝑢

𝑑𝑡
= 𝑔 (

𝜌𝑝−𝜌

𝜌𝑝
) −

𝐶𝐷𝑢2𝜌𝐴𝑝

2𝑚
. 

Now terminal velocity as I already mentioned is the maximum velocity attained by 

particle under free settling conditions. So that is 
𝑑𝑢

𝑑𝑡
= 0 as I already explained. So we 

are trying to find out this terminal velocity Ut, This is Ut , t stands for terminal velocity, 

so in this equation if you make this 
𝑑𝑢

𝑑𝑡
 is equals to 0 under terminal free settling 

conditions then we have Ut is equals to whatever this equation, from this equation what 

we have 
𝑔(𝜌𝑝−𝜌)

𝜌𝑝
=

𝐶𝐷𝑢𝑡
2𝜌𝐴𝑝

2𝑚
 and 𝑢𝑡

2 =
2𝑔(𝜌𝑝−𝜌)𝑚

𝜌𝑝𝐶𝐷𝜌𝐴𝑝
 and then if you take square root which 

has each side then you have Ut is equal to now this is under terminal condition  



So this U should be replaced by the Ut. So this is true under the condition 
𝑑𝑢

𝑑𝑡
= 0 are 

when 
𝑑𝑢

𝑑𝑡
 is equal to 0 then U is nothing but Ut terminal velocity. So 𝑢𝑡 = √

2𝑔(𝜌𝑝−𝜌)𝑚

𝐴𝑝𝜌𝑝𝐶𝐷𝜌
.  

So now this is the generalized terminal velocity condition for any particle, which is 

settling under one-dimensional conditions one-dimensional moment or the motion of 

the particle is one-dimensional in a kind of container and then the settling is due to the 

gravity. So this is the velocity expression generalized expression. It is not specific to 

any particle. So but only assumption that you know under free setting conditions that 

is terminal velocity,  that is we are having here.  

Then, now we take to the spherical particle case So how we do that one only this 

previous expression wherever that 𝑢𝑡 = √
2𝑔(𝜌𝑝−𝜌)𝑚

𝐴𝑝𝜌𝑝𝐶𝐷𝜌
  that expression in place of Ap, 

we will be writing a projected area of spherical particle, that is 
𝜋𝐷𝑝

2

4
 and then in place of 

m we will be writing 
𝜋𝐷𝑝

3

6𝜌
. So that the mass of the particle 𝜌𝑝 , that is mass of the particle.  
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So let us say if you take the diameter of the spherical particle is Dp then this is the 

volume 
𝜋𝐷𝑝

3

6
 is the volume of the particle. If you multiplied by 𝜌𝑝, then you will get the 

mass of the particle, projected area for a spherical particle is 
𝜋𝐷𝑝

2

4
, then in this equation 

𝑢𝑡 = √
4𝑔(𝜌𝑝−𝜌)𝐷𝑝

3𝐶𝐷𝜌
 when you substitute then you will get this expression. 

So here what we are doing, we are in this equation we are substituting √2𝑔(𝜌𝑝 − 𝜌)𝑚 

is (
𝜋𝐷𝑝

3

6
) 𝜌 and then this 𝐴𝑝 =

𝜋𝐷𝑝
2

4
 then 𝜌𝑝 as it is, CD is as it is, 6 is already there and 

then 𝜌 is as it is so this rho p, this 𝜌𝑝  can be cancelled out, this pi, this 𝜋 can be cancelled 

out, this 𝜋𝐷𝑝
2 and then this cube of Dp

3 can be cancelled out. So this if you can 2 2 is 

are , 2 3 is are so 4 by 3, you will get, so that is you will get square root of 4/3 g is as it 

is (𝜌𝑝 − 𝜌) is as it is and there is Dp as it is by 3 is there, CD is there, 𝜌 is there, so now 

this is the when you substitute this one you will get this equation.  

So this is what, you will get this equation, in this Ut equation you simply substitute 

substitute A and m, then you simplify then you get this part this expression. Now, this 

is the expression for the terminal velocity of this particle irrespective of which flow it 

is whether stokes regime or whether it is slowly settling or very fastly settling only the 

condition that it should be free settling condition under terminal velocity condition, so 

then this is valid this, this is valid irrespective of the flow regime, whether the particle 



is small, particle is lost, particle slowly settling or very fastly settling it is not dependent 

on it, it is a generalized one. 

Now we have already seen there is a stokes regime then Newton's regime of the flow 

in the previous lecture. If the Reynolds number is very small then we call it a kind of 

stokes regime or be less than 1 then we call it stoke slow regime and then for that 

condition 𝐶𝐷 =
24

𝑅𝑒𝑝
 when you substitute that 𝐶𝐷 =

24

𝑅𝑒𝑝
 here then we get the kind of 

expression for a stokes terminal velocity or the terminal velocity for a spherical particle 

under stokes regime. 

Then similarly for spherical particles we have that Newton’s flow regime that is if 𝑅𝑒𝑝 

greater than 1000 then CD is equals 0.4 to 0.4 feet varies. Let us take 0.44 let us see the 

value substitute here then you will get settling velocity of a spherical particle under 

Newton’s flow regime, whereas this velocity is it is it is valid for the entire range of 

Reynold’s number from very small Reynolds number less than 1 to Reynolds number 

Re 1000 or even more also, only thing that corresponding CD value one has to substitute 

here to get the expression.  

So now but if you know the CD value then it is fine but if you do not know CD value CD 

is again function of u or Ut so that is the reason you know, we need to further do 

analysis, but you can use this equation only when you know CD. In order to get this 

velocity you should know CD but again in order to know the CD you need to know back 

this Ut. So they are interconnected without a one information you cannot get this value, 

so at least one of them should be known, if you know the u then CD you can calculate, 

if you know CD then you can calculate u, so that is what we are going to see, we do 

step by step.  

Let us take in our first case when the Reynolds number is very small 𝑅𝑒𝑝 is very smaller 

than 1 then 𝐶𝐷 =
24

𝑅𝑒𝑝
 that is we have already seen. So that is 

24𝜇

𝐷𝑝𝑢𝜌
. So now here this one 

we are going to substitute here. So this is under the terminal condition. So this u should 

be Ut, so now in this equation what we have done here in place of CD, we have written 

24 we have to write 
24𝜇

𝐷𝑝𝑢𝑡
, this is we have to substitute here, when you substitute here 

24𝜇

𝐷𝑝𝑢𝑡
 , so you have taken up numerator. 



 

So, now you further simplify it, simply what will get you will get a kind of velocity for 

a terminal velocity under stokes flow regime. So here this rho, this 𝜌 is cancelled out 

and then Dp and Dp
2 is there, so Ut is already as it is 𝑔(𝜌𝑝 − 𝜌) is as it is, this 4 by 3 

multiplied by 24 that you can write it as a 18 because 4 1 is are 4 6 is are 3 x 6= 18, so 

18 𝜇 as it is. 

Now here again inside the square root of right side there is a Ut and then a left side is 

also 1 Ut. So what you do is you take square either aside so then left hand side you have 

𝑢𝑡
2 =

𝑔𝐷𝑝
2(𝜌𝑝−𝜌)𝑢𝑡

18𝜇
. So this one Ut in the right hand side and square of the Ut in the other 

side would be cancelled out so that you will have 𝑢𝑡 =
𝑔𝐷𝑝

2(𝜌𝑝−𝜌)

18𝜇
. So this is the velocity, 

this is the terminal velocity under stokes flow condition for spherical particles, terminal 

velocity of a sphere in stokes flow regime, that is very small Reynolds number.  
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So, similarly now what we are going to we are going to do for the Newton's flow regime, 

for the Newton’s flow regime 𝑅𝑒𝑝 are of 103 to 2 x 105 CD is constant so that constant 

let us say 0.44, it varies between 0.44 and 0.45 slightly, but let us take 0.44 so now in 

this equation, whatever the FD equation it is so that equation if you substitute you know 

this what we have 𝐶𝐷 =

𝐹𝐷
𝐴𝑝

⁄

1

2
𝜌𝑢2

.  



This is what we have, so from here 𝐹𝐷 =
1

2
𝐶𝐷𝜌𝑢2𝐴𝑝, next of 0.44 you can take 𝐶𝐷𝜌𝑢𝑡

2 

and then Ap you can take it as 
𝜋𝐷𝑝

2

4
. So and then they simplify your, you simplify it then 

you will get 0.055𝜋𝐷𝑝
2𝑢𝑡

2𝜌. This is what you get drag force, but drag force is not our 

interest as of now.  

Our interest is to find out the motion of the particle velocity of the particle. So terminal 

velocity of the particle. So in this equation, this is generalized equation that we just 

derived here in this equation in place of CD if you substitute 0.44 you will get, if you 

substitute here 0.44, then you have (4/3 x 0.44) under the square root of that all comes 

out to be 1.75. 

So 𝑢𝑡 = 1.75√
𝑔𝐷𝑝(𝜌𝑝−𝜌)

𝜌
. This is the terminal velocity of a sphere settling in Newton’s 

flow regime. So now we have developed for spherical particle in general also, we have 

developed the settling velocity of the particle Ut etc, we have also developed the settling 

velocity for a spherical particle specific to the spherical particle settling in a gravity 

force due to the gravity the particle is settling.  

So then depending on the flow of m we have find out that terminal velocity expressions 

Ut for stokes flow regime as well as the Newton’s flow regime indeed we have also 

first we have developed a generalized terminal velocity expression, then we applied for 

individual strokes and then you can see flow regime.  

But those expression that is terminal velocity of the sphere under stokes or Newton's 

flow regime, you can know only if you know the Reynolds number. If the Reynolds 

number is less than 1 then only you can say that it that it is in stokes flow regime, and 

then you can apply that equation. If you if your Reynolds number is more than 10 power 

3 then only you can know that it is a kind of a Newton flow regime then only 

corresponding terminal velocity equation you can use that we have just derived, but if 

you want to know the Reynolds number you need to terminal velocity then only you 

can use this expression, that is they are interconnected, you need to know the Reynolds 

number in order to use this equation.  

But in order to find out the Reynolds number, you need the velocity condition. So there 

is a connection, they are interconnected, so you cannot calculate. So that is the reason 



we are going to develop a criteria which is independent of velocity term. So our 

independent of the Reynolds number term, so that it suggests a kind of mathematical 

simplification so that we can use them in our this kind of problem kind of thing. 

Even without the knowledge of velocity or without the knowledge of Reynolds number 

we can find out the terminal velocity accordingly. So that is what we are going to do, 

we are trying to develop a criteria for settling regime of spherical particles without 

requiring the knowledge of the terminal velocity or the Reynolds number or the drag 

coefficient., how to do that one. 
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Let us see first Stokes law we have our 𝑅𝑒𝑝 =
𝐷𝑝𝑢𝑡𝜌

𝜇
. So this is the Reynolds number 

definition. 𝑅𝑒𝑝 =
𝐷𝑝𝑢𝑡𝜌

𝜇
 , this criteria we are going to develop our two regime, stokes 

Stokes regime and Newton's regime and then we find out the values.  

So if that value that criteria if it is matching the Stokes regime then corresponding 

Stokes regime equations will be used, so for that this mathematical simplification we 

are going to do now. This 𝑅𝑒𝑝 =
𝐷𝑝𝑢𝑡𝜌

𝜇
,  𝜌 here this Ut under the stokes regime we have 

already seen that 
𝑔𝐷𝑝

2(𝜌𝑝−𝜌)

18𝜇
 is nothing but ut and that the stokes regime. 

So that we are substituting here simply 𝑔𝐷𝑝
2 1 Dp is already there, so Dp3, 𝜌 is as it is 

(𝜌𝑝 − 𝜌) is here and then 18𝜇 and then 1𝜇 is there is 18𝜇2. So now it is not having any  



Ut value. So now this one what you do 18, you take to the left hand side from this 

equation and then rearrange this equation such that 𝐷𝑝 [(
𝑔𝜌(𝜌𝑝−𝜌

𝜇2 )
1/3

]. So whatever the 

power 1/3 to this parameter is , and then this entire whole power cube. 

So that it is same as this this part so that it is same as this part. So now here this part 

whatever the within the square brackets part is there so that you write it as k so that if 

you write it as k, k is like you know 𝐷𝑝 [(
𝑔𝜌(𝜌𝑝−𝜌

𝜇2 )
1/3

]. This is going to be the k factor. 

So this we are taking as a kind of criteria. 

Now here for the Stokes regime what we have the maximum value for our Ap we can 

assign as 1 under the stokes regime because 𝑅𝑒𝑝 less than 1 we call it as a kind of Stokes 

regime. So upper limit for this stokes regime, let us take as 1, so if 𝑅𝑒𝑝 1 then Stokes 

law is applicable. So if 𝑅𝑒𝑝 is equals to 1 then Stokes law is applicable. So now in this 

equation you substitute 𝑅𝑒𝑝 is equals to 1. So k is equals to 181/3 that is k is equal to 

2.6. So if 𝑅𝑒𝑝 is maximum limit of 𝑅𝑒𝑝 for Stokes flow regime is 1, then corresponding 

k value is 2.6, maximum limit of k value for Stokes regime from here what we 

understand it is 2.6, that means if k less than 2.6 then Stokes regime is applicable.  

That is if k less than 2.6 then Stokes law is applicable and you need to know velocity 

in order to calculate the 𝑅𝑒𝑝, but in order to calculate the this k, you do not need 

velocity, so that is this this quantity, this quantity that is 𝐷𝑝 [(
𝑔𝜌(𝜌𝑝−𝜌

𝜇2 )
1/3

] this quantity 

you need to find out it is only function of geometry size of the particle and then the 

fluid properties like, you know, 𝜌 the density viscosity of the fluid and then density of 

the particle only that much you need to know, you need to know size and density of the 

particle and density and then viscosity of the particle you need to know, once you know, 

then you can find out this k value. 

If this k value is less than 2.6 then you can say the Stokes law is applicable and then 

you can use this equation to find out Ut. So what we have done we have in general tried 

to escape requirement of terminal velocity because you can calculate terminal use this 

terminal velocity equation only when you know Reynolds number and then in order to 

(Reynolds), know the Reynolds number you need to know this Ut, so they are 



interconnected. So that is what we try to do. We try to escape of requirement of this Ut 

in order to do this calculations.  
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Now same thing for the Newton's flow regime 𝑅𝑒𝑝 is 103 to 2 x 105 , so we know that 

𝑅𝑒𝑝 =
𝐷𝑝𝑢𝑡𝜌

𝜇
 so 

𝐷𝑝𝜌

𝜇
 is as it is, Ut under the Newton’s flow regime is this one we just 

derived. So this is t, Ut for a Newton’s flow regime, previous Ut for this, so flow regime.  

So now here this equation again, if you rearrange the what you get you will get 

1.75 [𝐷𝑝 (
𝑔𝜌(𝜌𝑝−𝜌)

𝜌
)

1/3

]
1.5

, so this this is nothing but again your k value. So that is 

1.75𝐾1.5. So now the lower limit for the Newton’s flow regime is 1000, 103, so lower 

limit of k would be 68.9. So that is here in this equation 𝑅𝑒𝑝 = 1.75𝐾1.5 here you 

substitute 𝑅𝑒𝑝 is equals to 1000 and then you calculate k, so it comes out to be 68.9. 

Upper limit of 𝑅𝑒𝑝 for Newton’s flow regime is 2x105, so now this you substitute 2x105 

into here in this equation 𝑅𝑒𝑝 = 1.75𝐾1.5, then you get a value  2360. That means if 

your k value is in between 68.9 to 2360 then Newton’s flow regime is applicable and 

then you can use this particular equation for your terminal velocity. 𝑢𝑡 =

1.75√
𝑔𝐷𝑝(𝜌𝑝−𝜌)

𝜌
 that you can use.  



So k is less than 2.6 Stokes regime, k greater than 68.9 is a kind of Newton's regime up 

to 2360, so it is Newton's flow regime. So whatever between 2.6 to 68.9, it is a 

intermediate range, where we do not have a kind of generalized expression for the 

velocity. It has to be obtained calculated using the CD value.  

So what we have seen today now till now we have derived a kind of motion of particle, 

especially 1D one-dimensional motion of particle in an unbounded the flow conditions 

particle settling under free setting condition, that is without any hindrance due to the 

neighboring particle or without any kind of hindrance because of the container wall.  

Under those conditions if a particle is settling due to the gravity, what is the expression 

for the terminal velocity for a generalized case generalized particle we have derived. 

Then we have also derived simplified that expression for a kind of spherical particle 

settling in the gravity force or gravity field.  

Then we have developed the velocity expression for the Stokes flow regime and then 

Newton’s flow regime for a spherical particle settling in a gravity field. Then we have 

also developed the criteria because the Stokes and Newton's flow regime terminal 

velocity equations we can use only if you know the Reynolds number and then 

Reynolds number is again dependent on this terminal velocity Ut so they are 

interconnected.  So in order to avoid the complications the interconnection of this 𝑅𝑒𝑝 

with Ut what we have tried to do, we try to develop the criteria in terms of k. 

And then that k if less than 2.6 we found it is a kind of Stokes flow regime for a spherical 

particle, if it is between 68.9 to 2360, then it is a kind of Newton's flow regime for a 

spherical particle settling in the gravity field, and then this k is in between 2.6 to 68.9 

then that is a intermediate range for that range, we do not have a kind of generalized Ut 

expressions so that we have to calculate using the generalized Ut expressions before 

developing the Stokes and Newton’s flow regime whatever the Ut expression that we 

have used, which is function of CD that we have to use.  

In the next lecture what we will doing, will be discussing the 3 to 4 problems example 

problems on this free settling conditions etc under the gravity and then we try to find 

out how to use this equation. If you know the Reynolds number it is straightforward. If 

you do not know the Reynolds number how to calculate this terminal velocity those 

kind of things we are going to see in the next lecture. 
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The references for this lecture are given here. The most of the lecture is prepared from 

these Unit Operations of Chemical Engineering by McCbe, Smith and Harriot book 

then other references we have Unit Operations of Particulates Solids, Theory and 

Practice by Ortiga Rivas. Some details of this lecture can also be found in this Coulson 

and Richardson’s Chemical Engineering series second volume, the Richrdson and 

Harker, Transport Processes and Unit Operations, this book by Geankoplis is also 

involving some information about settling of particles in a fluid, then Unit Operations 

by Brown et al and then Introduction to Chemical Engineering by Badger and 

Banchero, these books are also a kind of a good reference books for the today's lecture. 

Thank you. 

 


