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Welcome to the MOOCs course Mechanical Unit Operations. We are discussing flow through 

packed beds or flow through beds of solids. We have already seen how to develop pressure 

drop equation for different Reynolds number region that is for small Reynolds number region 

𝑅𝑒𝑝 is less than 1 as well as the large Reynolds number regions 𝑅𝑒𝑝 greater than 103 and then 

we also assumed that the contribution due to the viscous losses and kinetic losses are kind of 

additive in total pressure drop that is occurring while a fluid is flowing through a packed bed.   

 

We assume that fluid is a kind of a Newtonian and incompressible Newtonian fluid. So that is 

what we have seen. So we just have a kind of, you know summary of the equations what we 

have derived in the previous lecture because this lecture is a kind of a followed part of the 

previous lecture. So flow through packed beds, pressure drop of a Newtonian fluid flowing 

through a packed bed. We have seen Kozeny Carmann equation for 𝑅𝑒𝑝 less than 1, we have 

derived it as 
∆𝑃

𝐿
=

150�̅�𝑜𝜇(1−𝜀)2

Φ𝑠
2𝐷𝑝

2𝜀3
.  

 

This equation for pressure drop so that is if a fluid is flowing through a packed bed but under 

very small flow rates or the having the Reynolds number very small, less than 1 then laminar 

flow conditions exist and under those laminar flow conditions the pressure drop for a fluid we 



can obtain by this equation. The pressure drop of a fluid flowing through a packed bed, we can 

obtain on this equation provide the Reynolds number is less than 1.  

 

Because here in the right hand side everything is known. �̅�𝑜 is a kind of superficial velocity or 

empty tower velocity. μ is the viscosity of the fluid, are known in general and then 𝜀 is the 

voidage of the bed, so that is also known. For the given type of particle the size of the particle 

or the sphericity of the particle are known in general. So everything is known in the right hand 

side. So simply one can substitute these parameters and then find out what is this pressure drop.  

 

Similarly, for 𝑅𝑒𝑝 greater than 103 then we have seen that Burke Plummer equation that holds 

very good, that is 
Δ𝑃

𝐿
=

1.75𝜌𝑣𝑜
2

𝜙𝑠𝐷𝑝
(

1−𝜀

𝜀3 ). This equation valid for the calculating the pressure drop 

of internal fluid flowing through a packed bed provided the Reynolds number is very large that 

is, you know turbulent conditions prevail within the bed.  

 

Then what about the intermediate range of Reynolds number? Let us say the flow rate is not 

very small. The flow rate is not very large that the flow conditions or the Reynolds number are 

less than 1 or greater than 103 respectively. Then what we do? We assume that the contribution 

due to these small Reynolds number flows and high Reynolds number flows whatever the 

pressure drops are there, or the viscous losses, contribution due to the viscous losses in the 

pressure drop and then contribution due to the kinetic losses in the pressure drop are additive.  

 

So whatever the first equation is there, that, the equation number 8 indicates, you know kind 

of contribution of the viscous losses in the total pressure drop that has occurred for a fluid 

flowing through packed bed. Similarly, equation number 10 provides a kind of information 

about the contribution of kinetic energy losses in the pressure drop calculation for a fluid 

flowing through a packed bed under high Reynolds numbers.  

So but in general, there may be cases where the contribution of viscous losses and then kinetic 

losses both may of significant importance and both of them may be contributing to the pressure 

drop of the fluid flowing through this packed bed. So under such conditions how to find, we 

found that, you know if we add together, you know these two individual contributions then 

whatever the pressure drop is there, that is suitable for the entire range of Reynolds number 

starting from small Reynolds number to the large Reynolds number.  



 

So this is the Ergun's equation which is valid for all ranges of Reynolds number encompassing 

small Reynolds number to the large Reynolds number range. Then Ergun has also found this 

equation is very much suitable for a different types of packing materials like spheres, cylinders, 

crushed materials etc and then he also found that, you know this equation valid for the wide 

range of the flow rates, wide range of the flow rates, small range to the larger range flow rates 

that is nothing but small Reynolds number to the larger Reynolds number ranges this equation 

holds good.  

 

He also found that by doing several experiments small change in 𝜀 is going to show a kind of 

a significant change in a kind of pressure drop, whether it increasing or decreasing that depends 

on whether 𝜀 is increasing or decreasing. So this, even a small change like, let us say if you 

change the voidage from 0.44 to 0.46 it is going to show a kind of significant effect on this, 

pressure drop. That also Ergun has found by doing several experiments, right. Up to this part 

we have seen the previous lecture.  

 

Now we try to find out the magnitude of viscous losses contributing to the pressure drop here. 

Similarly, magnitude of kinetic energy losses which is contributing to pressure drop of a fluid 

flowing through this packed bed. How to do this one? Simply whatever the pressure drop is 

there here, from this equation, the pressure drop if you divide by kinetic energy that is half rho 

v square then we get a kind of a magnitude of kinetic energy losses but in which equation 

should we make this adjustment? That we should do only in equation number 10 if we are 

looking for kinetic energy losses because equation number 10 is, you know primarily talks 

about only the kinetic energy losses contribution in the pressure drop.  

 

So if you wanted to find out the magnitude of the viscous losses in this pressure drop 

contribution, in this pressure drop then you know, the pressure drop should be divided by the 

viscous forces per unit area and then equation that should be used that is the equation number 

8 because equation number 8 talks about the, you know contribution of the viscous losses in 

the pressure drop calculations for the Newtonian fluid going through packed bed here. So that 

is what we are going to do now here.  
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So let us start with the kinetic energy losses. So whatever the Δ𝑃 is there that we are dividing 

by 
1

2
𝜌�̅�2, v is average velocity within the bed, v bar here we have taken, designation, notation 

�̅�, it is not v-2 it is �̅�, so this �̅� is nothing but the average velocity of the fluid within the bed.  

 

That is not known but we found that this �̅� is nothing but �̅�, 
�̅�0

𝜀
that is the superficial velocity or 

empty tower velocity or under this pressure drop condition without packing if you allow the 

fluid whatever the velocity is existing, average velocity is existing in the empty tower that 

velocity is �̅�0 so that is in general known. And then 𝜀 is kind of a voidage of the bed. So 

everything is known.  

 

So now what we do in equation number 10 that is the pressure drop at high Reynolds number 

that is Burke Plummer equation that we did, on that equation we rearrange such that on both 

the side that equation is we divide by (
𝜌

2
) ( 

�̅�0

𝜀
)

2

then we get the magnitude of the kinetic energy 

losses in the pressure drop calculation for the flow of Newtonian fluids through packed beds. 

When we do this one, we get in the right hand side, 2 × 1.75 (
1−𝜀

𝜀
)

𝐿

𝜙𝑠𝐷𝑝
.  

So this right hand side, this equation everything is known. Voidage is in general known for a 

given bed. Sphericity of the particles in general known and then equivalent diameter of the, 

volume equivalent diameter of the particles are known for a given system.  
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Let us say if you take a voidage 0.4 and then if you calculate what is the right hand side term, 

you will get right hand side term of the previous equation, 5.25 × (
𝐿

𝜙𝑠𝐷𝑝
). What is 

𝐿

𝜙𝑠𝐷𝑝
 

indicates L is the height of the packing. 𝐷𝑝 is the, you know the size of the particle, the 

equivalent size of the particle or volume equivalence sphere diameter of the particle, that is 

known for a spherical particle 𝐷𝑝 is nothing but the diameter of the particle. For a short 

cylinders 𝐷𝑝 should be, you know equivalent diameter we have to find out for short cylinder 

and then multiply by its sphericity 0.874 that is what we have to do.  

 

This indicates you know the pressure drop you know corresponds to a loss of 5.25 velocity 

heads for each layer of particles whatever this 
𝐿

𝜙𝑠𝐷𝑝
 is indicating the layer of particles.  So the 

pressure drop under these conditions when 𝜀 is 0.4 it corresponds to a loss of 5.25 times the 

velocity heads for each layer of particles.  

 

You have a kind of, you know bed like this. There is a perforated plate, you know and then 

different particles are there like a kind of, you know layers, kind of particulate and they are, if 

it is spherical particles you can see like, you know of spherical particles and all of them are of 

same size you can easily say that these particles are, one particle, another they are forming a 

kind of layer.  

 



So each layer is going to offer, let us say this is one layer, so this one layer, this two layer, this 

is second layer let us say, third layer if I write you know so each layer of particle, you know 

per, you know whatever the packed bed height that has been taken, that is offering 5.25 times 

the velocity head, you know, of a pressure drop. That is what is meant by pressure drop 

response to a loss of 5.25 times velocity heads for each layer of particles.  
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Now similarly we try to find out magnitude of viscous losses. Viscous losses what? if viscous 

forces are there, the viscous forces whatever are there divided by area if you do, so you will 

get the, you know viscous losses per area. This particular term if you, the pressure drop if you 

divide by this particular term, then you will get the, kind of you know magnitude of the viscous 

losses or the contribution of the viscous losses in the overall pressure drop of, you know fluid 

flowing through packed bed.  

 

What is this Fμ, this viscous force? We have already seen by Stokes' drag on a single particle 

whatever the Stokes' drag is there or the drag force in the Stokes' limit is there, that is nothing 

but the viscous force, because that is the only force acting under the small Reynolds number 

range and that is the viscous force. So that is 3𝜋𝜇𝐷 that is what and then, the area of the particle 

that is pie let us say if you take Dp2.  

 

That if you do you get this term like you know 𝜋 and 𝜋 is cancelled out here, and then 
3𝜇

𝐷𝑝
 so 1 

𝐷𝑝 and then square of this 𝐷𝑝 is cancelled out, so 
3𝜇

𝐷𝑝
, �̅� is nothing but 

�̅�0

𝜀
. So from the Kozeny 



Carman equation whatever is the 
∆𝑃

𝐿
= 150𝜋2𝐷𝑝

2  and all that term is there, from that equation 

if you divide by this particular term then you will get the magnitude of viscous forces.  

 

Why that particular equation Kozeny Carman equation, because that is the equation showing 

the pressure drop due to the viscous losses only. No other contributions are included in that 

equation and then indeed we wanted to know the magnitude of viscous losses. We do not want 

to find out, you know, include the other terms here.  

 

Then from equation 8 we have this ∆𝑃 =
150�̅�0𝜇(1−𝜀)2𝐿

𝜙𝑠
2𝐷𝑝

2𝜀3
. So this is the Kozeny Carman equation. 

Now both side this equation if you divide by 
3𝜇�̅�0

𝐷𝑝𝜀
 then you will get this particular term. So this 

indicates a kind of a magnitude of viscous losses, you know for the, for one layer of particles. 

So that is for one layer of particles the pressure drop is going to be, you know 
50𝐿

𝐷𝑝𝜙𝑠
2 (

1−𝜀

𝜀
)

2

 

times the viscous forces.  

 

So that is what it indicates. But this here also we have 
𝐿

𝐷𝑝
 so that indicates per layer of particles. 

So this is about magnitude of viscous losses and then kinetic losses. So now these equations 

we have developed for a generalized kind of cases of particles are having same size and shape. 

And their size and shape we brought into the picture by including both 𝜙𝑠 as well as the 

equivalent sphere volume equivalent diameter 𝐷𝑝
2 we have included here.  

 

But in general you may have a kind of variety of particles, you know, different types of 

mixtures of particles like you know, a few particles may be spherical, a few particles may be 

hemispherical, a few particles may be, you know short cylinders, a few particles may be raschig 

rings like that you may have different fractions. So under such conditions also these equations 

are valid especially Ergun equation is valid as he has already tried different types of particles.  

 

So but under such conditions what you have to do, you have to find out the surface mean 

diameter of the particle for this mixture of, you know particles the way that we have done you 

know previously in one of our lectures in screen analysis. There for a mixture of particles we 

have find, we found different types of, you know mean diameters, surface mean diameter one 



has to take here for that case and then same equation can be used exactly the similar way here. 

So Ergun equation can be used for mixture of different particle sizes by using surface mean 

diameter instead of 𝐷𝑝, simply that is it.  
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So now here, you know the pressure drop equations whatever, the equation that we have 

derived here, we derived in Kozeny Carman equation, we have derived in Burke Plummer 

equation and then Ergun equation we have written so all these equations are in a kind of 

dimensional form.  

 

But in general in transport phenomena, momentum transfer especially it is beneficial to write 

the final solutions in terms of dimensionless parameters. So what we do, the pressure we try to 

write in a kind of dimensionless friction factor and then remaining terms we write such a way 

that you know some kind of terms like Reynolds number etc that will come into the picture. In 

the dimensional analysis or dimensional consideration if you do this equation you will get 2 

dimensionless parameters.  

 

One is the friction factor for a packed bed; another is a kind of Reynolds number. So before 

going to represent this Ergun equation in terms of those dimensionless parameters we try to 

write what are those dimensionless parameters for a packed bed. For a single particle Reynolds 

number we know that 
𝐷𝑝�̅�𝜌

𝜇
. But if you have a packed bed packed with different types of 

particles then what is the Reynolds number? Is it the same one or different one? That we define.  



 

Similarly, for friction factor, for flow through empty column we know that tau w by half rho v 

square, that we know. But is it the same thing here in packed bed when we have the column or 

tower is filled with some kind of packing? That is what we are going to see first and then 

generalize this second equation in terms of those friction factor and Reynolds number because 

that will be easier way of using this equation for calculations, and as well as there could be, 

serve as a kind of generalized purpose rather than specific to some cases only.  

 

So Reynolds number and friction factor relation for packed beds, so as I said for a single particle 

we know Reynolds number and then for single empty column without packing we know the 

friction factor. We try to find the expression for a packed bed or a column packed with a few 

particles, few types of particles. For single particle, especially for spherical particle Reynolds 

number we know it as 𝑅𝑒𝑝 =
𝐷𝑝�̅�𝜌

𝜇
, �̅� is nothing but the average velocity, 𝜌 is the density of the 

fluid, 𝜇 is the viscosity of the fluid, 𝐷𝑝 is the diameter of the spherical particle.  

 

Now in this equation 𝐷𝑝 we replace by Deq and �̅� we replace by �̅�, 
�̅�0

𝜀
 in order to bring in the 

effect of the packed bed characteristics in this Reynolds number. Then what will happen? We 

will have 𝑅𝑒𝑝 = 𝐷𝑒𝑞; �̅� is nothing but 
�̅�0

𝜀
, so 

𝐷𝑒𝑞�̅�0𝜌

𝜇𝜀
  we get. So  

𝜌�̅�0

𝜇𝜀
 we keep as it is here, then 

next level what we do? We write D equivalent expression.  

 

D equivalent expression yesterday and in previous lecture we have derived it as 
2

3
(

𝜀

1−𝜀
) 𝜙𝑠𝐷𝑝. 

So when you write this one, this equation you will get 
2

3

𝐷𝑝�̅�0𝜌

𝜇(1−𝜀)
𝜙𝑠. So this 𝜀 and this 𝜀 is 

cancelled out. So for spherical particle especially the 𝜙𝑠 is equal to 1.  

 

Then this 2/3 we in general we do not include because they are in general merged with 𝜆1, 𝜆2 

etc those kind of constants, so without taking this 2/3 constants and then for, if you assume that 

particles are spherical particles then Reynolds number is these things, 
𝐷𝑝�̅�0𝜌

𝜇(1−𝜀)
 is the Reynolds 

number for a packed bed packed with spherical particles. If it is packed with non-spherical 

particle then 𝜙𝑠 will also come into the picture.  

 



Only the 2/3 will not be there because those constants in general we have the tortuosity factors 

𝜆1, 𝜆2 etc those things we are having so in those things we mix up and then we write only the 

one, you know Reynolds number because this is what we get if you do the dimensional analysis 

or dimensional consideration if you do and then try to find out what are the dimensionless 

parameters 𝑅𝑒𝑝 you are going to get this one. You are not going to get anything is multiplied 

by those kind of thing so either of the reason that 2/3 can be taken off. 
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Now similarly what we do, friction factor, friction factor in the case of packed bed. Before that 

what we do friction factor in empty tower what we have, we have 
𝜏𝑤

1

2
𝜌�̅�2

. And then 𝜏𝑤 is nothing 

but 
Δ𝑃

𝐿
, 

𝐷

4
 is nothing but 𝜏𝑤 for a kind of, you know Newtonian fluid flowing through an empty 

column and then divided by this 
1

2
𝜌�̅�2 is as it is.  

 

Then here what we get is 
Δ𝑃

𝜌
, if you rearrange this equation you will get here from this equation, 

from this equation if you rearrange 
Δ𝑃

𝐿
 is equals to half, or if you rearrange this equation, f is 

equals to 2 one's are, 2 two's are, so f is equals to 
1

𝜌�̅�2, this multiplied by 
Δ𝑃

𝐿

𝐷

2
, you will get. 

Further you get here 
Δ𝑃

𝜌
, if you keep one side so then 

2𝑓�̅�2

𝐷
× 𝐿. So that is what you will get.  

 

Δ𝑃

𝜌
=

2𝑓𝐿�̅�2

𝐷
 . Here now what we do, for f we are writing 𝑓𝑝, p stands for packed bed, in order to 

just differentiate between the friction factor for the case of empty column or empty pipe and 



then friction factor with column with having a kind of packed material. So this 𝑓𝑝 is for the 

packed bed and then D is replaced by D equivalent. Similarly, �̅� is also replaced by 
�̅�0

𝜀
. So that 

is what we are going to do.  

 

From here we wanted to find out friction factor so let us keep P only one side, remaining terms 

if you write (
−Δ𝑃

𝜌
) (

𝐷𝑒𝑞

2𝐿�̅�2) so (
−Δ𝑃

𝜌
) is as it is. D equivalent we found it as (

2

3
) (

𝐷𝑝𝜙𝑠𝜀

(1−𝜀)
) in one of 

the previous lecture, okay and then 1/2 L is as it is and then �̅� is like, you know, (
�̅�0

𝜀
)

2

okay 

because there is a square for �̅� so then here also we have the whole square term.  

 

So now this equation, now this 2 and this 2 can be cancelled out. So here 
Δ𝑃

𝐿
 we can write it as 

one term, and the 
𝐷𝑝

𝜌�̅�0
2, we can write one term, here there is one 𝜀 and then here there is 𝜀2 so 

we club together, so we get 𝜀3  and then (1 − 𝜀)  is as it is, and then this 1/3 is as it is, but there 

is a kind of tortuosity factor.  

 

So let us consider one factor 𝜆3, in order to bring the tortuosity factor because this L is the 

packing length, height of the packing but the fluid element is traveling more than the packing 

length because of tortuous paths. So because of that one, lambda, one factor should come. 

Already we have taken 𝜆1, 𝜆2 for previous derivation so let us take 𝜆3, so, but however this, 

you know, when you do the dimensional consideration you take only the parameters.  

 

We do not take the constants etc in the picture, or those can be clubbed with the other kind of 

the constants of the final equation that we are going to derive. So without 
1

3𝜆3
 it has to be defined 

because of the dimensions considerations, we take only the parameters, we do not take the 

constants. So here friction factor in the case of packed bed what we get 𝑓𝑝 = (
−Δ𝑃

𝐿
) (

𝐷𝑝

𝜌�̅�0
2) (

𝜀3

1−𝜀
). 

This is what we get.  

 

So now this is the additional term coming because of the, you know packing material and then 

this part is also coming because of the packing material. So, yeah anyway so now what we do 

this Ergun equation we non-dimensionalize so that Ergun equation can be written in terms of 

this 𝑓𝑝 friction factor or f versus 𝑅𝑒𝑝 or Re that is what we are going to do now.  
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So this is the Ergun's equation that we had seen which is having the additive contribution of 

both viscous losses and then kinetic losses. So this is the viscous losses part. This is the kinetic 

losses part and then this is the total overall pressure drop. So overall pressure drop is a, having 

the additive contribution of the viscous losses and then kinetic losses.  

 

Now this equation we are going to rearrange. Rather rearranging what we do, we take this 

particular term like you know, write in the first term whatever the terms we are having. So we 

rearrange such a way that you know this 
𝜌�̅�0

2

𝜙𝑠𝐷𝑝
(

1−𝜀

𝜀3 ).  

 

This we keep here in the right hand side also, so here so that is the reason we have here, you 

know 
𝜌�̅�0

2(1−𝜀)

𝜙𝑠
2𝐷𝑝

2   is as it is, so whatever the μ is there, so that we are writing outside in the 

parenthesis, extra terms we are writing here in this parenthesis after taking out these, these 

rounded terms, whatever these terms are there we wanted to have common in both the terms.  

 

So ρ is required here which is not there so we are multiplying 1 ρ and then dividing 1 ρ here. 

And then out of
(1−𝜀)2

𝜀3
, (

1−𝜀

𝜀3
) we are keeping here so (1 − 𝜀) is remaining here and then out of 

Dp2, one 𝐷𝑝 is taken out so one 𝐷𝑝 is remaining here, and then here in first term initially we 

have �̅�0 only but we want �̅�0
2 so one �̅�0 term is here dividing so that it will be balanced. So this 

is the additional term we are getting. 



 

So now why are we doing these things? So this particular term whatever is rounded here, this 

term will be taken common, so that we have this 150 multiplied by this term and then if you 

multiply that will be 
𝜇(1−𝜀)

𝐷𝑝�̅�0𝜌
+ 1.75. What is this term in this square parenthesis? It is nothing 

but 
1

𝑅𝑒𝑝
, it is nothing but 

1

𝑅𝑒𝑝
, that is, you know Reynolds number for the case of packed bed.  

 

So for the spherical particles we just strike out these phi s terms for the simplicity we take the 

spherical particle otherwise this 𝐷𝑝 should be multiplied by the 𝜙𝑠 then, so (
Δ𝑃

𝐿
) in the right 

hand side 
𝜌�̅�0

2(1−𝜀)

𝐷𝑝𝜀3  we are taking common after taking 𝜙𝑠 is equal to 1, that is for spherical 

conditions. So from the first part we have 150 ×
𝜇(1−𝜀)

𝐷𝑝�̅�0𝜌
. So that is nothing but 

1

𝑅𝑒𝑝
. So we can 

write 150/𝐷𝑝 and then this part is anyway taken common so only 1.75 is remaining.  

 

So now what we do? We take this particular term whatever the term that we have taken 

common. That we will take to the left hand side and combined with the pressure drop term to 

see what we will get.  
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So right hand side we are having only 
150

𝑅𝑒𝑝
+ 1.75 and then whatever the factor manipulation 

term was there that we have taken to the right hand side and then combined with (
Δ𝑃

𝐿
), already 

existing (
Δ𝑃

𝐿
). So if you see the friction factor derivation that we just derived, (

Δ𝑃

𝐿
) (

𝐷𝑝

𝜌�̅�0
2) (

𝜀3

1−𝜀
) 

is nothing but friction factor.  

 

So that is what we understand here, from here so friction factor for packed bed is nothing but 

150 by Reynolds number for packed bed plus 1.75. This is what we get. And then this equation 

is having 2 contributions again. The first term, the first contribution in the right hand side is 

nothing but the viscous losses. So whatever this term is there, that is going to have influence if 

the Reynolds number is small and then second part is known as the kinetic losses or the 

contribution due to the kinetic losses and this part is going to have an influence or the 

dominance or dominant role when the Reynolds number is very large, or the flow is very large, 

so that is for laminar flow 𝑅𝑒𝑝 should be less than 5 to 10 in general.  

 

Basically it should be less than 1 by default but people have found by several experimental 

studies it can be extendable even up to 5 to 10, 𝑅𝑒𝑝 5 to 10 also it is going to be laminar flow 

and under such condition f can be directly taken as 150 by 𝑅𝑒𝑝, not necessary to have 1.75, 

even if it is added that is going to have very small difference. 

 



Similarly, turbulent flow condition, when 𝑅𝑒𝑝 is greater than 2000 then fp is equals to 1.75 

only, that is a constant value, so that is not going to change in general. So whatever the first 

part, viscous part contribution also if you add for larger Reynolds numbers so that is going to 

be very small value to show any influence on the friction factor value, or from there whatever 

the pressure drop that you calculate. 

 

So that means fp versus Rep if you plot, let us say .1, 1, 10, 100, 10 cube, 10 power 4 like this 

if you have then so it should be like something like this. For small Reynolds number it is going 

to be linear something like this up to Re 10 something like this and then for large Reynolds 

numbers it is going to be constant like this corresponding to value of you know 1.75, and then 

in-between Reynolds number it is going to have curved shape like this. 

  

So this is in general, valid for viscous part of laminar flow and this is in general, this part is 

valid for the turbulent flow or larger Reynolds number flows where only kinetic losses are 

predominant. Here both contributions are going to have a significance. So this is how you know 

we have to do the, you know conversion of pressure drop information in terms of, you know 

friction factor and then Reynolds number for given equation. Now what we do, we take a few 

example problem to see how to make use this equations in order to know pressure drop of a 

Newtonian fluid having packed bed having certain voidage. 

 

(Refer Slide Time: 33:30) 

 
So example one, air flowing through packed bed of spheres having diameter 12.7 mm, so 

spherical, you know there is a packed bed which is packed with a kind of spherical particles 



having diameter 12.7 mm. Void fraction that has formed because of this packing is 0.38. Bed 

diameter, so it is 12.7 mm is the particle diameter and then 0.61 is the bed diameter. So see this 

diameter, the column is there, so the column in which you are doing this packing kind of thing.  

 

So this is nothing but bed diameter and this is nothing but particle diameter. Our particles are 

having certain diameters. Assume all the particles are having same size and shapes. Spherical 

shape is given and then size is 12.7 mm that is also given. Bed height, the L, the packing height 

let us say you pack up to this part, so the packing height is L. It is not the length of the entire 

column, it is only the packing height. 2.44 mm is the packing height and then air is flowing 

through this bed at 0.358 kg per second.  

 

It is not given volumetric flow rate, it is mass rate is given and density of air is 1.21 kg per 

meter cube. And then density of viscous, and then viscosity of air is 1.9 x10-5 Pa.s so calculate 

what is the pressure drop.  
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Very simple you have to find out the Reynolds number first of all, whether it is under the small 

region or the high flow region so that we can use only that particular part. So first actually you 

know in order to know the Reynolds number you need to know the velocity, superficial velocity 

at least �̅�0 you know, you need to know. But it is not given. Rather it is given the mass velocity. 

If the mass velocity, if you multiply by the cross sectional area then what will, I mean if you 

have the density, if the density is multiplied by the cross-section area then you will get the mass 

velocity = 𝜌�̅�0.  



 

So for that we need this cross-section area of the bed, 
𝜋𝐷2

4
, D is now, this is the, you know 

column diameter. I am not writing 𝐷𝑝. It is not particle diameter. It is for the bed, the column, 

whatever the column that has been taken for packing that column diameter is 0.61 meters. So 

it is having the cross-section area of 0.2922 m2. It can be written as S naught also because in 

our derivation this we have represented as 𝑆0.  So 𝐷𝑝 is given as 12.7 mm and then height of 

the packing is 2.4 meters.  

 

So the Reynolds number 𝑅𝑒𝑝 =
𝐷𝑝𝜌�̅�0

(1−𝜀)𝜇
for the packed bed, we have just derived it. So here 𝜌�̅�0 

if you multiply together then you can write it as a kind of mass velocity. So that means, because 

v naught bar is not given, mass rate of the air is given. So from there you can find out, you 

know somehow this mass velocity. So that is the reason we have written the Reynolds number 

in terms of G that is mass velocity is nothing but 𝜌�̅�0.  

 

So that should be nothing but air flow rate divided by the cross-sectional area. So whatever the 

air flow rate is there, if you divide by this cross-sectional area then you will get mass velocity 

in kg/m2.s. So this if we use here in this equation Reynolds number then you will get 1321 as 

the Reynolds number. The air flow rate is given as 0.358 kg per second and then cross-sectional 

area of the bed that we have obtained it as 0.2922-m2. So the mass velocity G is going to be 

1.1225 kg/m2.s.  So that you substitute here in the Reynolds number here. This is the mass 

velocity. This is the diameter of the particle and this is the viscosity and 0.38 is 𝜀. So Reynolds 

number is coming to be 1321.  
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So now we have this equation 𝑓𝑝 =
150

𝑅𝑒𝑝
+ 1.75. We need to find out Δ𝑃. We were not asked to 

find what is the friction factor, okay. So in terms of mass velocity this we have to rearrange 

this equation. Why, because here also we have this v bar term which is, �̅�0 term which is not 

known. So what we do, you multiply by ρ and then divide by ρ so that in the denominator we 

have 𝜌2�̅�0
2 so that we can write G2.  

 

That we can write as G2 so then we get (
Δ𝑃

𝐿
) [

𝐷𝑝𝜌𝜀3

𝐺2(1−𝜀)
] =

150

𝑅𝑒𝑝
+ 1.75. So now here everything 

is known. Here everything is known. G also we have calculated. Rest everything is given. 𝑅𝑒𝑝 

we have already calculated. So we substitute here.  

 

So (
Δ𝑃

𝐿
) is 2.44 meter. 𝐷𝑝 is 0.0127 meters and then ρ is given as 1.221 kg per meter3, epsilon 

is given as 0.38. G we calculated as 1.1225. 𝑅𝑒𝑝 we calculated as 1321. So when we substitute 

all these things and simplify you will get 0.0497 x 105 Pascals that is nothing but 4.97 kPa.  
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So now what we do? We take another example problem. So here what we do, we have seen 

like in a, you know in one of the statements while we deriving the, after derivation of the Ergun 

equation that Ergun equation can also be used for the mixture of particles, only thing that if 

you are using that equation for mixture of particles then 𝐷𝑝 has to be replaced by the surface 

mean diameter. So that, on that basis we are going to do this problem now.  

 

So keeping all conditions same as in previous example number one that we just solved but 

taking a mixture of spherical particles of different size as below then what is the pressure drop? 

In the previous example problem spherical particles were only taken but all of these particles 

were having same size. Now also the spherical shape is there but the different fractions are 

there. 25% by volume 25 mm size spheres are there, 40% by volume 50 mm size spheres are 

there and then 35% by volume 75 mm size spheres are there. So then you, what you have to 

do, solution, the screen analysis. We have to find out average particle size of the mixture as we 

did in the screen analysis chapter.  
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So when we do it the average particle size 𝐷𝑝 average, especially surface mean diameter if you 

name it, it is 
1

∑(𝑥𝑖/𝜙𝑠𝐷𝑝𝑖)
is, you know spherical particles different size you know 25 mm, 40 mm 

like that it is given, you know. 25 mm, 50 mm and then 75 mm, 𝜙𝑠 is 1 because all particles 

are spherical shape only here also, xi is also given, you know 0.25, 0.4 and 0.35 fractions.  

 

When you substitute all these value, 0.25 by 25 mm, 0.4 by 50 mm and then 0.35 by 75 mm, 

add them together and then take the reciprocal. Then you will get 44.1176 mm which is nothing 

but 0.044 m. So corresponding to this 𝐷𝑝 value what is the Reynolds number that we can find 

out. So when we do this one, 𝐷𝑝 is 0.044, in this case we have not taken rho v bar but we have 

calculated G because �̅�0 is not given. G is, we calculated as 1.1225 in the previous problem, 

same thing we have to use.  

 

Viscosity whatever is, previous problem is, same thing we have to use here. voidage 0.38 given 

in the previous problem, same thing we are using here. Except 𝐷𝑝 rest all the parameters 

conditions are same. So when you substitute these values here in the Reynolds number 

definition then you will get Reynolds number is approximately 4193.  
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Then we have seen that 𝑓𝑝 =
150

𝑅𝑒𝑝
+ 1.75. So what we can see here Δ𝑃𝐷𝑝 is there and all these 

are same in both the cases, previous case as well as this case. Only this Δ𝑃𝐷𝑝 is changing and 

then this 𝑅𝑒𝑝 is changing. Rest everything is same.  

 

So we can write it as 2 cases, case 1 previous problem, case 2 this case our present problem. 

So then we can write 
Δ𝑃1𝐷𝑝1

Δ𝑃2𝐷𝑝2
=

150

𝑅𝑒𝑝1
+1.75

150

𝑅𝑒𝑝2
+1.75

  that we can write so that to reduce our calculations. 

When we do this one, so Δ𝑃1 let us take present case because P1 I have used 4193 in the 

calculations.  

 

So Δ𝑃1 would be present case here so you will get only Δ𝑃1 is not known, 𝐷𝑝1 we just find it 

out as a 44 mm something like this. Previous problem 𝑅𝑒𝑝 is 1321. This problem 𝑅𝑒𝑝 is 4193. 

So then we substitute 𝐷𝑝2 whatever that 4.97 kilo Pascal previous problem and then you do the 

calculation. It is going to be 1.375 kilo Pascal. 
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Now we take one more example problem. Let us take packed bed of small cylindrical particles. 

The previous two problems we have taken spherical particles though one case we know all 

particles are same size but second problem all particles spherical shape but there are different 

mixtures, mixtures of different sizes like you know 25, 50 and 75 mm like that. So now here 

we are taking in this example problem small particles so small particles, small cylindrical 

particle in the sense that L should be equals to height of the cylindrical particle, so something 

like this. This we have already seen.  

 

If you take this one as the kind of cylindrical particle and if it is the diameter of the short 

cylindrical particle and then this is the height of the short cylindrical particle. If H is equals to 

D or they are very close to each other, then we can say those particles are say kind of short 

cylindrical particle. So packing material is now short cylindrical particles. Voidage is 0.4, 

height of the bed is 3.6 meters and then here also air enters at certain temperature and pressure 

corresponding viscosity 1.9 x 10-5 and then corresponding density 1.221 kg/m3 for the air at 

this temperature and pressure conditions of the bed.  

 

And then here also the air flow rate is given. Air flow rate is given in kg per meter square 

second. That is based on empty cross-section area of the bed. So that means mass velocity is 

given, so that is G equals to rho v naught bar is given. Rather you know v naught bar, you know 

G, rather mass rate G is given. So then what is the pressure drop? First what we have to do, we 

have to find out the sphere volume equivalent diameter 𝐷𝑝 for this short cylinders what we 



have to find out what is 𝜙𝑠. If you remember 𝜙𝑠 directly we can use for the short cylinder 𝜙𝑠 

values here.  
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Sphere volume equivalent diameter can be taken as 𝐷𝑝 here and then 𝐷𝑝 =
6𝑉𝑝

𝜙𝑠𝑆𝑝
. Vp is nothing 

but volume of the particle, 𝑆𝑝 is nothing but the surface area of the particle. Now particle is a 

short cylinder, and then 𝜙𝑠 is the sphericity of the short cylinder. For short cylinders sphericity 

we have already found it as a kind of 0.847, in chapter 1. Now this short cylinder the volume 

if you wanted to find out you have to find out the cross-section area of you know this thing and 

then multiplied this cross-section area and then multiplied by height H. But now H is equals to 

D.  

 

So we can write (𝐷).
𝜋𝐷2

4
, this is the, 

𝜋𝐷2

4
 is the kind of cross-section area of the circular or the 

diameter based on the, you know cross-section of the cylinder and then multiplied by height of 

the cylinder that will give the volume of the cylinder. Now height of the cylinder is equals to 

the diameter of the cylinder that is D. And then 1 by, surface area is the, you know surface area 

of this cylindrical, the circular cross-section this one plus surface area of the, you know 

remaining cylindrical section.  

 

So circular section area, surface area is you know 
𝜋𝐷2

4
 and there are 2 these, you know circular 

sections are there so that should be multiplied by 2 plus you know surface area of the cylinder 

is 𝜋 D H, so H is now D, so that is 𝜋 D . So this also we have done previously but still we are 



doing once again, okay so then we substitute here we know this 
𝜋 𝐷3

4
 as a kind of volume of the, 

you know short cylindrical particle. And then 6𝜋𝐷2 as a kind of surface area of small 

cylindrical particle then substitute D values here.  

 

Then we get 0.015 meters as the sphere volume equivalent diameter or 15 mm as Dp here. Now 

using this 𝐷𝑝 if you find out the 𝑅𝑒𝑝 =
𝐷𝑝𝐺

(1−𝜀)𝜇
 because G is given, it is, rho is given but �̅�0 is 

not given. So rho into �̅�0 is nothing but G mass velocity which is given as 2.45. That you can 

use here. 𝐷𝑝 just now you find it out, is 0.015 meters, 0.4 is the voidage. So (1 − 𝜀) is .6 and 

then 1.9 x 10-5 Pascal second is the viscosity so Reynolds number is coming approximately 

3224.  

 

So once this Reynolds number is known then you can use 𝑓 =
150

𝑅𝑒𝑝
+ 1.75 equation and then 

find out f and from there we can find out Δ𝑃. Or directly you can use the Δ𝑃 equation in the 

Ergun's equation form. Either way you can do it.  
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So since previous 2 problems we have done in terms of you know friction factors then you 

calculated Δ𝑃 but what we tried to do here, we tried to do the same thing directly using the 

Ergun equation so that to have a practice for the different way. So this is the, you know Ergun's 

equation. So here also this �̅�0 is not known. Both the terms are having, you know �̅�0.  



So what we do, we multiply wherever �̅�0  is there by density so that we can have a kind of, you 

know here 𝜌�̅�0  has a G and then 𝜌2 and then you have 𝜌 here so that here you have G, in the 

second term you can have G2. Then 
Δ𝑃

𝐿
=

150𝐺𝜇(1−𝜀)2

𝜙𝑠
2𝐷𝑝

2𝜌𝜀3
+

1.75𝐺2

𝜙𝑠𝐷𝑝𝜌
(

1−𝜀

𝜀3
).  

 

Now if you substitute all these values G is known, 𝜇 is known, 𝜙𝑠 is known, 𝐷𝑝 you calculated, 

ρ is known, 𝜀 is known so everything is known here in this right hand side equation, if you 

substitute all the values here and simplify you will get Δ𝑃 as 23.963 kilo Pascals.  

 

So this is about the flow through packed beds, especially for Newtonian fluids going through 

packed beds made of different types of particles. So how to develop the equations for small 

Reynolds number, large Reynolds number we have seen and then combining together we have 

formed the equations, Ergun equation which is valid for the entire range of Reynolds number 

and that information the pressure drop versus measurable parameters of the packed bed system 

that information, that are Ergun equation we have converted in terms of the friction of pressure 

drop or f versus 𝑅𝑒𝑝. That we have found out as 𝑓𝑝 =
150

𝑅𝑒𝑝
+ 1.75  

 

Then we have taken some problems, you know so that gives a kind of most, most of the 

information about flow of a Newtonian fluid flowing through a packed bed, okay. Now next 

lecture what we do, we will discussing about the flow of the Newtonian fluid through a 

fluidized bed.  
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The reference for this lecture is primarily the, for this especially packed bed lectures, we are 

referring the unit operations of chemical engineering by McCabe, Smith and Harriott book, 

then other reference books are Unit Operations of Particulate Solids: Theory and Practice by 

Ortega-Rivas, Coulson and Richardson's Chemical Engineering Second volume by Richardson 

and Harker is also a kind of good reference book. This Transport Processes and Unit Operations 

by Geankoplis is having several examples of problems which can be helpful for the students. 

Other reference books are Unit Operations by Brown et al and then Introduction to Chemical 

Engineering by Badger and Banchero. Thank you. 

 

 


