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Welcome to this lecture number 12, on this N P T E L course and fluid mechanics for 

chemical engineering undergraduates students. In the previous lecture, that is lecture 

number 11 we were discussing an important topic called the Reynolds transport theorem. 

(Refer Slide Time: 00:41) 

 

So, just give you a background on what we were discussing. So, essentially there are two 

ways of analyzing problems in mechanics, one is called the system or control mass 

approach or system approach. Here, you are following a same set of particles, material 

particles, fluid particles and as time proceeds this particular a volume this which we call 

the system, which has the same set of material particles or fluid particles. As a fluid 

flows after a time t the same volume will be stressed and be found in shape and it will 

change it is a orientation and so on. It will move as the fluid flows but, essentially you 

are following the same set of fluid particles as the fluid is moving. 



This is not very unlike what one does in a simple particle mechanics, Newtonian 

mechanics where you identify a mass like a swear and then we worry about the forces 

that are acting on those fear. And then we can compute that trajectory or motion of the 

particle, we are applying Newton’s laws motion. 

So, likewise one can imagine doing that for a fluid. Although fluid is not a discrete entity 

in the continued hypothesis it is continuous medium. So, a chunk of fluid can be 

identified and which has the same set of mass points and material points. And as time 

proceeds due to motion, this control mass are sometimes this is also called as material 

volume will evolve in time. And we can, once you identify the forces, the body forces 

and surface that are acting on the same set of mass points you can compute the a motion 

of this by applying the Newton’s second law. 

But, the difficulty in fluid mechanics is that we do not want to follow the same set of 

mass points because a most applications in fluid mechanics. For example, you may have 

a pump which is delivering the fluid. So, you may want to understand what the power 

requirement in the pump or you may have a pipe and you may want to worry about what 

are the drag forces that are exerted by the flow on a particular section in a pipe. 
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In such instances, you are not worried about the same set of for example, if you identify 

this green patch. This green patch will move through the pump and it will eventually go 



away and so will attach in a fluid in a pipe this will not continue to remain in the pipe it 

will go away. 

So, whereas, we are interested in fixed regions and space in most engineering 

applications. So, it becomes important for us to identify what are called control volumes. 

Which is a fixed region and space, which can comprise of a device like a pump or pipe 

and so on. So, for example, you may have a piping network like this and you can identify 

a fictitious boundary where fluid is entering and leaving. There is it is not a physical 

boundary but, it is nearly that surface that demarcates the region from outside it is called 

the control surface. 

And once you have this, there is physical boundaries compressed by the wall of the tube 

and you can identify this as your region of interest but, fluid continuous to come in and 

leaves. So, if you consider a patch of fluid will come and then it will leave. It may not 

stay in the same region of space, physical region of space it will continue to move. 

But, whereas, this is very convenient because we are interested in understanding 

properties such as what must be work that we must perform on the fluid in order to make 

it flow at a given flow rate. So, in a pump for example, so in such cases we want to 

identify a fixed region and space and we want to analyze flow problems. So, that is call 

the control volume approach. 

So, here we are not following the same set of mass points as in the control volume of 

system approach. This is the control volume approach this is the preferred approach in 

fluid mechanism. Once we choose this approach, then again we land up with the same 

issue. For example, when we did a eulerian versus lagrangians description. 

We realize that even if you want work only with eulerian description we cannot compute 

accelerations by just taking partial derivatives because accelerations correspond to 

identical piece of a point and point with a fixed identity. And the rate of change of it is 

velocity not nearly the rate of change of velocity with time when expressed in eulerian 

coordinates. So, we had a tool called the substantial derivative, which enabled us to 

calculate the rate at which a particle changes it is acceleration as you follow the particle 

at a given point in time and space. 



So, likewise here we want to extend a similar idea to not just a single point but, a 

microscopic volume. So, the reason is that eventually we want to write down 

fundamental principles of a mechanics such as a law of conservation mass, law of 

conservation of momentum which is momentum, which is Newton’s second law of 

motion and a law of conservation of energy which is first law of thermodynamics. 

So, in such instances all these laws are applicable to identifiable piece of matter in their 

most natural form. So, for example, Newton’s law says that mass time acceleration is 

equal to sum of forces and an identifiable piece of matter not on a fixed region in space. 

So, we need again a tool or a vehicle that transforms a control volume information to 

control mass information. So, that we can naturally apply a quantity a principles such as 

newtons second law. 

(Refer Slide Time: 06:54) 

 

So, this is a done by using what is called the Reynolds transport theorem. This was what 

we procedure within the last lecture, let me quickly a recapitulate what we did. (No 

Audio Time: 07:00 to 07:07). The Reynolds transform theorem is way of relating time 

derivatives of quantity such as mass in a given region of space to that a with associated 

with the system or the material that is present in the system. For example, we said that 

you identify a fixed region of space. This is our C V indicated in blue and let us identify 

our system or the control mass to be that that coincides with the c v at a given instant in a 

time. 



This is time t 0, at time t 0 the system and C V, C V is short form control volume 

coincide. At a later time you still have the C V is a fixed region in space but, the system 

would have moved depending on the way the fluid flows I am just showing 

schematically here something like this. 

So, this is at time t 0, this is at time t 0 plus delta t the C V is denoted in blue remains the 

same. The system that is because of fluid flow if you follow a set of points they will in 

general move away from the system from the C V. 

So, we want to be able to write rate of change of instantaneous rate of change of mass 

momentum energy or the fluid that present in the C V, of the fluid. That is present in the 

system in terms of the variables of this C V because we want to follow only the control 

volume approach. While the fundamental principles are most naturally a applicable to the 

control mass approach. So, we want to be able to write the derive a relation that is the 

purpose of reynolds transport theorem. 
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To this end so, we want to derive apply conservation of mass, momentum and energy to 

the system that is present in the C V at time t, not although the system is moving away 

from the c v at a later time. So, mass is simply the mass of fluid is m, momentum is m 

times v. So, small it is lower case m and energy is half m v dot v. 



Now, we define a generic quantity eta for which we will derive the reynolds transport 

theorem. This could be any quantity of a upper unit mass. For example, for mass eta is 1 

for momentum, this is mass per unit mass for momentum eta is m v divided by m eta is 

v. For energy kinetic energy, this is kinetic energy motion in the fluid eta becomes half v 

square, v dot v denote as v square. 
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So, once we have this then we are interested in the total amount of quantity that present 

in the system of mass momentum or energy. That is obtained by taking a volume integral 

over the system. So, in my notation v with a cross is the volume because the v without a 

cross will be denoted for velocity will be result for velocity. 

So, to distinguish volume from velocity I will use a cross. So, this volume over the 

system eta which is quantity per unit mass time is rho, which is mass per unit volume 

integrated over the volume. This will give you the total amount of either mass 

momentum or energy depending on what you put for eta. So, this is a volume integral 

and we are interested in d N by d t of the system. And how this is related to C V 

variables. That is the net outcome of the reynolds transport theorem. So, what we do is 

first go back to the figure. So, let us keep reference on this figure. 
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So, imagine that at time at t 0, the system and C V are coinciding but, a later time the 

system as left the C V but, there is some since we are only looking at a infinitival time 

difference. There will be some region II, where the system and C V still are coinciding. 

There will be a region I where the system has left the C V and there will be region III, 

which it is system as created a fresh because of it is motion. 

So, there will be 3 volumes one can identify in this composite thing and will try to 

simplify based on. So, will simply look at this diagram and will try to simplify our time 

derivative of all quantities a in terms of this particular picture that we have. 
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So, by fundamental definition the rate of change of the total quantity of either mass 

momentum or energy present in the system is limit delta t going to 0. The instantaneous 

rate of change is the total amount present in the system at t 0 plus delta t minus total 

amount present in the system at t 0 divided by delta t. So, that is the fundamental 

definition. 

So, from the figure that I just drew at t 0, the system coincides with C V because the 

system and C V coincide at time t 0 but, at a later time so the amount of quantity present 

in the system and C V are identical because if this region. 

But, at a later time t 0 plus delta t, the system is comprised of N II, which is the common 

region between the system and C V at time t 0 plus delta t plus N III at time t 0 plus delta 

t. 

But, N II is nothing but, N C V minus N I. So, recall in our picture here that N II is 

basically, N II is that region which is the total C V volume minus the volume that is 

vacated by the system at a later time. So, N II is N C V which is this entire thing minus N 

I and N III, is the new space that is created by the a system due it is motion from the C 

V. 
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So, N II can be written as N C V minus N I plus N III will remain as such at t 0 plus delta 

t. So, I am going to substitute all this in the fundamental definition of time derivative. So, 

rate of change of the total amount of something present in the system is limit delta t 

going to 0, N C V minus N I plus N III at t 0 plus delta t minus N C V at t 0 divided by 

delta t. 

So, this can be split into 2 or 3 terms so, limit delta t going to 0 N C V at t 0 plus delta t 

minus the amount of various quantities present in the C V at t 0 divided by delta t. This is 

one term and the second term is plus limit delta t going to 0, N III t 0 plus delta t by delta 

t minus limit delta t going to 0, N I t 0 plus delta t divided by delta t. 

So, if you look at this expression, here we are just looking at the rate of change of the 

quantity present in the C V at two different times divided by delta t. So, from 

fundamental definition of calculus this is d N C V divided by d t. 
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So, that is essentially the rate of change of the quantity that is present in the C V that is 

very very simple. So, this precise we can put partial derivative. So, now we have to 

simplify these two terms, let us call this term, let just look at this term. So, if you recall 

the system was here, the C V was here the system has moved and this was region III. 

Region III is the newly created region. So, what is this? This is the amount of change that 

is of in any quantity like mass momentum or energy because of the fact that this system 

as moved to this new region in space. 
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So, how do we a calculate this? So, why is the system or control mass moving? The 

control mass is moving because if you take a patch of surface on the C V. Let us say, you 

take a patch of surface on the C V. Now, that patch is moving to a newer region because 

of the fact that the fluid on the surface of the C V has some normal velocities, has a 

component of velocity in the normal direction. If you consider the C V to be like this if 

the fluid is purely tangentially moving on the surface that cannot be any motion in this 

direction. 

But, if there is a normal motion if at a point the velocity is like this then there will be a 

component that is moving in this direction. That means that the system will change it is 

location at a later time by that amount. 

So, you take this is the surface of the C V this is at you know at all times the C V is 

remaining fixed in space. That is called the C S, surface of the C V is called control 

surface. And this is the region III and why is this movement? This moving because this is 

the unit area, this is the area patch. Area is denoted by a magnitude and direction because 

whenever you have area, you can denote it is direction by telling the way in which the 

normal is pointing. You can say the normal is pointing from in to out or out to in will 

normally take in to out is called out ward unit normal. 

So, this area is a vector. Area element is a vector and the velocity in general can point in 

somewhere direction. So, this volume that is created over a time delta t must be because 

of the fact that the fluid element on this surface has a component in the normal direction. 
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So, v dot d A is essentially times delta t will be the volume. That travels by a tiny patch 

of area on the control surface of the C V. As the system proceeds to leave the C V and 

occupy a new nearby location. 

So, this length is mod v times delta t, if the magnitude of the vector v a times delta t. So, 

to calculate the volume. So, d the amount of material, as amount of the extent of change 

in any quantity like mass, momentum or energy in a tiny volume due to the motion of the 

system from the C V is given by the volume is given by essentially the amount of 

quantity per unit mass times mass per unit volume times the volume at t 0 plus delta t. 

But, we know what the volume is it is eta times rho d v is something that we just 

calculated as v dot d A times delta t. This is d N III t 0 plus delta t. 
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This is the extent of change that you will encounter because of the motion of the fluid 

through a tiny patch of surface. And therefore, there is a new tiny volume that is created 

and what is the change in mass momentum of energy due to this volume. That is this 

term so, you multiply you take the quantity either mass momentum or energy multiplied 

by the per unit mass that is eta, multiplied by rho that gives you per unit volume times 

the volume itself which is this. 

Now, the total amount is, so, we are interested in if you remember quantity limit delta t 

going t 0 N III of t 0 plus delta t divided by delta t. That is the quantity that appeared as 

one of the terms if you remember previous slide so, you had this term. So, we are now 

trying to simplify this term. 

So, what is that term? That term is nothing but, we have eta and so, this is d N. In order 

to get N you will do an integral over the control surface, the entire control surface III 

plus now if you recall so, the C V and the system this is the region III which is been 

created this is the region I, which is been deleted by the system due it is motion. 

So, will do the integral over the entire control surface III of d N III at 0 plus delta t 

divided by delta t. This will be our result and in order to a simplify this further substitute 

d N from here to here. So, this term which we are after is simply integral C S III eta rho v 

dot d A delta t divided by delta t the delta t will cancel out to give limit delta t going to 0 



N III divided by delta t is nothing but, integral over the control surface III eta rho v dot d 

A. 
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Now, what this means physical is that so, v dot d A is the volumetric flow rate. Suppose, 

you consider tiny patch on the control surface III d A and n is d A is the unit area. So, d 

A is given by vector is given by this magnitude times direction the outward unit normal 

is velocity is like this. The volume that is created per unit time, the volumetric flow rate 

is v dot d A times rho will give you the mass that is flowing per unit time in this volume 

times eta will give you the rate at which a quantity like mass, momentum or energy is 

changing per unit time by virtue of the motion of the fluid out of the C V. 
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This is essentially of the physical interpretation of this term. Now, we can do same thing 

for region I, recall that you had the system, the control volume to be fixed, system has 

moving at a later time this was region III which was just computed, region II, which we 

already calculated and region I is again the stuff that was deleted by the motion of the 

system or control mass from the C V. 

So, we can write a similar expression because the ideas are very similar. Limit delta t 

tending to 0 N 1 t 0 plus delta t divided by delta t is equal to. 

Now, the key thing is that here the unit outward normal is in this direction but, we have 

assumed that the fluid is moving this direction; the velocity is in this direction. So, v dot 

d A will be a negative quantity now but, we have already introduced a negative sign here 

in our earlier slide here. Earlier, we assume that this quantity is already we have taken 

into account a negative term. So, we have to put an explicit negative sign because we 

have already taken the negative signs there because we have assumed that fluid is the 

system is deleting this volume. So, since v dot d A is negative, we will put an explicit 

negative sign. So, v dot d A is negative rho over eta rho v dot d A. 

If we did not put the negative sign in the previous slide, then we can simply forget about 

negative sign here because the v dot d A itself is negative but, since we explicitly took 

into account the negative sign their. We have to take care of an additional negative sign 

here, that is idea. 
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So, if we had all the terms that we have. Therefore, we have all the terms that we have 

then d N d t of the system at a given time t 0 is equal to d d t over the C V of eta rho d v 

plus integral over C S I. Now, the 2 negative signs will add to give a positive sign eta rho 

v dot d A plus integral over C S III eta rho v dot d A. 

Now, this is C S I and C S III will form the entire control surface because this was the 

system C V and this was the system. So, this was control surface III and this is control 

surface I which was deleted. This is the one that is created so; this will form the entire 

control surface of the C V. So, this is simply eta rho v dot d A. 



(Refer Slide Time: 26:29) 

 

So, the rate of change of a quantity like mass, momentum or energy that present in the 

system at a given time is equal to, if the system and C V coincide at that time is equal to 

there are two terms one contribution is the bulk rate of change of quantities in the C V 

itself eta rho d v. The next contribution is due to the motion of fluid in and out of the C V 

due to fluid flow that is the flux term. 

So, just if you recall in the substantial derivative of a quantity like temperature if you 

recall was d T d t plus v dot del t. This was the convicted rate of change is the local rate 

of change. Likewise, if you take a finite volume of C V, then you ask the question, what 

is the rate of change of mass, momentum or energy of the fluid material that present in 

the C V? As you follow the material there will be two contributions, one is the local rate 

of change present in the C V itself a due to various reasons and the other is because of 

the fact that the fluid is flowing in or there will be a net flux a fluid in or out depending 

on the problem. And this will lead to either a flux of energy momentum or mass or an 

influx of energy momentum or mass. 

So, therefore, this contributes to the convection or convicted, this similar to this 

convicted contribution to the substantial derivative this because of the flow that takes 

fluid away. And hence therefore, it takes mass away momentum away as well as energy 

away or into the control volume. 
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So, this is the Reynolds transport theorem. So, the Reynolds transport theorem 

sometimes shortened as R T T says, that the rate of change of any quantity such as mass, 

momentum or energy present in the system at a time t naught is comprised of two parts 

assuming that the system and C V coincide at time t 0 is equal to the inherent rate of 

change of such quantities within this C V plus a surface contribution eta rho v dot d A. v 

dot d A is the volumetric flow rate on a tiny patch, about a tiny surface patch rho times 

that will be the mass flow rate and eta times is eta is quantities per unit mass. 

So, this will be the rate at which certain quantities such as mass, momentum or energy or 

either carried away or carried into the control surface, control volume depending on the 

problem nature of the problem. So, the key thing that we must note here is that, if you 

have a C V and you take a patch of surface so, that is what I called d A here. Now, this d 

A is normally written as n times d A, the unit outward normal from the C V is pointing 

outside. 

So, if v dot n times d A so, v dot vector d A is v dot n times d A if v dot n is positive that 

is v is in the same direction as n. There are two cases if v dot n is positive, greater than 0 

that means there is a net outflow of fluid. If v dot n is negative there is a inflow, at a fluid 

around that patch and if you integrate over the entire patch if you either find v dot n to 

be, I mean entire integral to be positive that means there is a net flow out and if you find 

that it is negative it is net flow in. 
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And also notice that the velocity is measured with respect to the C V, that is you put a 

coordinate system and the velocity is with respect to this coordinate system. The reason I 

am mentioning this is that suppose you have a moving C V. This is stationary frame of 

reference. Suppose I have an airplane is moving so, I can construct at a constant velocity. 

So, I can construct a moving frame of reference where I put my coordinate system on a 

the plane itself. In which case the C V itself is moving at a constant velocity your c v is 

not the fixed region in space it is following the airplane. So, it is moving with the 

constant velocity. 

So, we can define relative velocity as v minus v s. Let say the system this the C V is 

moving with a velocity v s. Now the Reynolds transport theorem for the moving frame of 

reference is d N system by d t is d d t over C V eta rho d v, that now as the same plus 

integral over C S eta rho v r dot d A. Instead of having absolute velocities, you have 

relative velocities because only with the relative velocity is that between the fluid and a 

control, I mean and the volume and the velocity at which the C V itself is moving will 

there be a net inflow or outflow. If the fluid is moving at the same speed as the C V then 

there is obviously no net inflow or outflow. 

So, the Reynolds transport theorem changes in the sense that here for moving frame it is 

the relative velocity that constant the flux term otherwise it is the same. 



So, this is the very important result in a fluid mechanics. There is a Reynolds transport 

theorem. Now, once we have this tool we can apply it to the fundamental laws of physics 

that are as applicable to a fluid. 

(Refer Slide Time: 32:38) 

 

So, essentially we will apply a law of conservation of mass to the C V then law of 

conservation of momentum which is Newton’s second law and conservation of energy 

which is first law of thermodynamics. I will give you enough background as we go 

along. 

But, essentially will apply the Reynolds transport theorem to this fundamental principles 

and then those will be the at starting point for us to solve problems in fluid mechanism. 

Now there are two ways to go about it, the first approach is what is called the 

macroscopic approach. The macroscopic approach says that, you apply the principles or 

macroscopic balances over larger regions of volume. So, those pieces of regions of 

volume could be so large that they can include a pump, then a pipe and then you have 

whatever that you have in your problem you can include all of this inside a huge C V. 

And then you can apply the principles of mass conservation momentum balance and 

energy balance and you can do problems, you can try to address problems. 

Such balances are useful but, they are very they give only grows quantities. They do not 

give or they cannot give detailed information like what is the velocity at each and every 

point in place, what is the shear stress at a point in a wall and so on. 
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But, you can also apply the fundamental principles to; instead of microscopic volumes 

you can apply to differential volumes which will lead to what are called Microscopic 

balances. Sometimes, macroscopic balances are also called Integral balances because the 

equations will be in the form of integrals. While the microscopic balances are sometimes 

called the Differential balances because the equations that we get will be in the form of 

differential equations. 

So, we will first apply the principles of mass conservation momentum balance and 

energy balance to mass conservation. First to macroscopic C V and then we will proceed 

to microscopic balances. So, both these approaches have their own advantages and they 

have their own difficulties so, we will try to indicate them as we go along. 
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Now, first is conservation of mass (No Audio Time: 35:23to 35:33). Now, conservation 

of mass, law of conservation of mass is that mass is neither created nor destroyed. When 

we apply this to a system suppose you follow a system or a control volume at time t 0 

and at a later time, this may undergo change like this. 

But, if you are following the same set of mass points because that is the definition of a 

control mass. That is your identity you are following the same identical set of fluid 

particles or material particles. So, by definition the rate of change of mass of this system 

or a control mass is 0 because we are following the same set of mass points, as we follow 

the material volume or the control mass. 
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So, the rate of change of mass of the system is 0. Now, we will use Reynolds transport 

theorem with eta equals once because n is the mass that present in the system. So, mass 

divided by mass becomes unity so, eta becomes unity eta is any quantity per unit mass. 

So, the rate of change of mass in the system per unit time from Reynolds transport 

theorem is; There are two contributions, one is the volumetric contribution C V rho d v 

plus the other is the surface contribution rho v dot d A but, conservation of mass says 

that this must be 0. 

So, this entire quantity must be 0 because there is why principle of conservation of mass. 

So, we have d d t integral rho d v plus C V plus integral C S rho v dot A to be 0. So, we 

can rewrite this slightly differently. 
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Take this to the other side. Now, if once we rewrite this we can interpret this physically 

in a very simple way. What is the what is the term on the left side integral suppose you 

consider a C V integral rho d v over the C V is the total mass present in the C V. So, this 

is the rate of change of mass d d t of that is rate of change of mass present in the C V in 

the control volume. 
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Now, why is the mass; why should the mass change in the control volume? Well it is 

because of the fact that in a real application for example, real C V could be something 



like a tank in which there are in flows and out flows. So, that could be multiple inlets and 

outlets. 

So, this is a this is the way real application that could be inlet see here and outlet see here 

and so on. So, if you take this as on your C V then why is the rate, why is the mass 

present in the C V, why should it change it should change, because there it should 

change with time because there is a net imbalance between the inflow and out flow. 

So, let us look at the right side what is it mean i told you that v dot d A is positive v dot d 

A is greater than 0. If there is an out flow, if entire surface integral is greater than 0 that 

means there is a net out flow of fluid. Now, this negative sign means that if there is a net 

out flow of fluid from a C V then of course, the mass of fluid present in the C V must 

decrease, that is what this means. 

If v dot d A is negative, if the surface integral is negative, the negative of negative is 

positive. If v dot d A is negative then there is a net inflow. So, if there is a net inflow 

through all the flows into the C V that means that mass present in the C V must increase 

as a function of time. So, this is a positive quantity so, that is all it means. 
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So, the again the sign convention is such that v dot d A is greater than 0 if there is out 

flow across a control surface, across the C S and v dot d A is less than 0 if there is a 

inflow across C S. 
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Now, let us try to simplify this in some special cases so special cases where that is the 

most general form of mass conservation equation for a C V. Now, let us simplify it for 

some special cases, first let simplify this for an incompressible fluid (No Audio Time: 

40:38 to 40:46). For an incompressible fluid by definition means that the density of the 

fluid is a constant it is not changing due to the flow. 

So, the most general form of mass conservation is integral rho d v d d t of C V is minus 

integral C S rho v dot d A. Now, since the C V is generally fixed in space it is not a 

function of time, you can pull this time derivative in if you choose to. 
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But, let just keep it like that but, since rho is a constant rho can be pulled out. So, rho d d 

t of integral C V d v is minus integral rho because rho is a constant, v dot d A can be 

written as v dot n d A because d A the unit area, it is a area element is a vector. It is 

magnitude times a unit output normal. 

So, whenever you have a small patch of area it is denoted by a magnitude and a direction 

the normal that is pointing from in to out. That is called the out ward unit normal, unit 

vector normal to the surface that is why it is called out ward unit normal. Now, let us try 

to see what this term means. This is integral over C V of d v that means this is d d t of 

the volume of this C V itself. 

But, the C V is the fixed region in space so; it is volume does not change with time 

unlike a material volume which changes with time. So, this becomes 0 so, this left side is 

0. So, the right side for an incompressible fluid simplifies to integral v dot and d A is 0. 

So, this is the most general form of mass conservation equation for incompressible 

fluids. Notice that we are not placing any restriction on whether the flow is steady or not. 

So, it is valid for valid for both study as well as unsteady. The only stipulation we make 

for an incompressible fluid is that the density is a constant. So, the time derivative 

vanishes because C V is fixed in space not because flow is steady. 



Still the quantity is inside the C V could change with you know so, still the velocity can 

change with time. But, that does not mean that this is valid only for steady cases. Even if 

you have unsteady cases if the fluid is incompressible then v dot n must be integral v dot 

n d A must be 0. 
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Now, let us try to think of a reasonably concrete examples, typically what you have C V 

with various inlets and outlets, a multiple inlets and outlets. So, this is let say some sort 

of a container and this is your C V, there are various inlets and outlets. Now, typically 

this inlets and outlets are pipes or of some cross section. So, you can have pipes or some 

rectangular conduits that is how inlets and outlets will be in real applications. 
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In general if you want to say what is integral v dot n d A 0. You have to; this is over the 

entire control surface you have to split this integral into various surfaces. So, integral 

over C S I v dot n d A plus because there are only few inlets and outlets over which fluid 

is flowing. So, you have to assume that we have to apply this two various inlets and 

outlets. At each inlet and outlet therefore, suppose I take a given inlet. Suppose, this is 

my control surface. 
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Now, it is useful to take the velocity, the control surface such that it is perpendicular to 

the; that is it is the normal of the control surface is parallel to the velocity vector that is 

entering the C V. For example, suppose you have a control surface like this, let us try to 

suppose you have C V like this.  

It is useful to keep the control surface and let say fluid is flowing perpendicular in this 

manner. It is useful to keep the control surface like this. So, even if you have a C V in 

which suppose you have a jet that is flowing like this. That is impinging on surface and it 

is flowing like this. Suppose, you have conical surface and jet is impinging and it is 

leaving. 

Suppose, you want to keep, you draw a C V with the C S. It is useful to keep this C S to 

be perpendicular to the outflow of or inflow of the fluid because so, this could be your C 

V, where the control surface is drawn such that they are perpendicular to the outflow 

because only then this v dot n becomes an easier quantity to evaluate. So, that is one 

simplification that one can achieve. The other thing is whenever you have flow in pipes 

and channels. We will see later that in general v is a function of the coordinates of the 

cross sectional area. That is if you have a pipe the velocity at various locations in the 

pipe, the point wise velocity need not be the same. They are in general different. 
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But, if you assume the flow to be uniform then v is independent of the cross section area. 

That is that means that at each and every point the velocity vector is pointing in a 



constant direction and the magnitude is also a constant. If so, we have v dot n d A is 0 if 

v is a constant and if you are assuming that this can also be written as v dot d A is 0. If 

you are assuming that v is a constant, it can be pulled out of the integral this is only for 

uniform flow approximation. 

Uniform flow approximation only in that thing we are velocity is independent of the 

cross sectional coordinates you can pull it out. So, integral over d A of the C S is nothing 

but, the area of the C S. 

So, v dot d A is 0 but, remember that the integral will have various inlets and outlets. So, 

we will have to count over all the inlets and outlets. So, the as I just mention a genetic 

problem could have many inlets and outlets. 
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So, the integral over C S over various so, you can split this integral into C S 1, C S 2 and 

so on. All this will therefore, will become sum over various cross sectional, control 

surfaces of v dot d A is 0, v dot a is 0 where a is the area of that particular control 

surface. 

And of course, there is a vectorian nature to the area because it depends on whether there 

is an inflow or outflow. If v dot A is positive then this outflow or if v dot A is negative, it 

is an inflow because n is an outward normal. So, the outflow normal to the area points 

from in to out. If the flow is from out to in then therefore, the product of these two 



quantities will be negative. If the velocity is parallel to the area that is outward normal 

then it will be positive. 

So, for incompressible, for uniform flow at the control surfaces plus incompressible flow 

whether it is steady or not it does not matter. So, you have integral over all control 

surfaces, velocity dotted with the area. The area is basically the scalar magnitude times 

the unit outward normal to each C S. 

The physical interpretation is v dot A is the volumetric flow rate. (No Audio Time: 

49:50to 49:58). So, integral over v dot d A over any control surface is the net rate at 

which volume flows per unit time out of the C V, if it is positive or into the C V if it is 

negative. So, the unit is meter cube per second. 
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So, essentially for an incompressible fluid the mass conservation boils down to volume 

conservation because density is a constant. Density is mass per unit volume, density is a 

constant and since mass conservation so, rho is mass per volume or mass is rho times 

volume. If rho is a constant then mass conservation amounts to volume conservation in 

incompressible fluids that is what we are seeing. 

Now, sometimes it is useful to think of an average velocity integrated over the averaged 

over the cross section so, this is Q, the volumetric flow rate divided by the area of cross 

section 1 over A integral area v dot d A; v dot d a is Q. So, Q by A is one over A integral 



v dot A. That is the average velocity at a cross section, a average velocity averaged over 

the cross section. 
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Now, the next simplification we will do is the steady flow. Now, the fluid may be 

compressible. So, the most general form of the mass conservation equation is integral rho 

d v plus integral rho v dot d A. This is over volume of C V, lower control surface is 0. 

By steady, we mean d d t of the quantity is 0. 

So, steady means this entire quantity the rate of change of mass is 0 because you are 

assuming things to be steady in the control volume. So, here you get whether it is a 

incompressible or compressible fluid. So, rho will occur inside the integral rho v dot d A 

is 0. 
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So, if you assume a uniform property that is if rho and velocity do not vary with cross 

sections. Although they may vary across different cross sections, if at each cross section 

if rho is a constant, rho v are constant at each cross section although they may vary 

across different cross sections. If each cross section with of the control surface then this 

area integral is trivial so, it becomes summation or all control surfaces. So, this becomes 

rho will still happen inside because in general rho at different control surfaces can be 

different v dot A is 0. 

So, if you assume uniform velocity at all inlets and outlets. So, in general this can be 

control surfaces outlets spilt into outlets rho v dot A. So, at outlets v dot A is positive so 

rho i V i A i where i is the index that sums over all outlets minus i is the index over all 

inlets since v dot A is negative. So, this becomes rho i V i A i over all index is 0 or this 

simply translates to summation over all inlets, rho i V i A i is summation over all outlets 

rho i V i A i this is for a steady flow. The mass conservation equation as applied for a 

steady flow. 

(Refer Slide Time: 54:12) 



 

If you just have single inputs single output that is only one inlet and single inlet and 

single outlet. We have rho in V in A in is rho out V out A out, this is for a steady flow. 

So, will stop here on the mass conservation balance, mass balance for a C V will 

continue in the next lecture. 
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