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Welcome to this lecture number 16 of NPTEL course on fluid mechanics for chemical 

engineering and undergraduate students. Today, we are going to discuss the integral 

energy balance, and we started this discussion very briefly in the last lecture. And as I 

told you in the last lecture all the fundamental integral balances in fluid mechanics 

namely, mass momentum energy they rest on a fundamental physical principle.  

For example, the integral mass balance came out as a consequence of the principle of 

conservation of mass, and integral momentum balance came out as a consequence of the 

Newton second law of motion. Now, we are ready to discuss the integral energy balance, 

and the fundamental principle that helps us to derive the integral energy balance is the 

first law of the thermo dynamics. The first law of thermodynamics is essentially 

generalization of or the notion of energy to system such as fluids.  
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So, the notion of energy is familiar from mechanics where you had potential energy, and 

kinetic energy of a macroscopic object like a sphere. So for example, you could say that 

a sphere is at rest if it is on top of a table let us said, and gravity is this acting like this is 

the ground level. Now, you can tip over this sphere and this sphere acquires it moves, 

and the motion the energy associated by virtue of its motion is half m v square, where m 

is the mass and v is the velocity, this is called the kinetic energy of the sphere, which as 

which is associated by the motion of the sphere.  

While the sphere is at rest we say that this sphere has a potential energy by virtue of its 

elevation from the ground level. So, of you allow if you just tip over this sphere this 

sphere is going to fall down eventually and it is going to come to the ground level. Now 

if you ask the question how is I going to bring this sphere back up to the same level you 

have to do work. So, that is you have to apply a force on this sphere that is we have to 

apply a force over this distance h, let us call this distance as h and the application of the 

force over a distance is h will amounts to doing work on this sphere.  

So, that you can bring it back to its original elevation and the force that you apply is 

exactly m g. So, the work that you done in order to bring the system back to its original 

state, this sphere back to its original level elevation is the same its initial kinetic energy. 

So, this is the work energy equivalence principle in mechanics principle in Newtonian 

mechanics which deals with objects such as spheres of macroscopic sizes and so on. 
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But now, we are in the domain of discussing energy conservation for systems like beaker 

of a fluid. For example, you may have a piston cylinder assembly and you may have a 

gas a dilute gas such as air present in inside in the piston cylinder assembly. Now let us 

imagine that you have this gas and initially the gas is at a given volume which is denoted 

by V 1 or V A, let us call it V A and the temperature. Let us say is constant or let us even 

insulate thermally this piston cylinder assembly and it has a temperature T A. Now 

imagine push putting in a weight.  

So, that this piston now moves. So, there is a weight that is acting there is a force that is 

acting. So, you compress the piston. So, that you are now in a new state B with volume 

V B and temperature T B. Now you have done work on the gas because you have applied 

a force and you have moved the piston over a distance. So, the volume of the gas initially 

which was V A is now greater than the final volume V B. So, you have certainly done 

work on the gas. Now initially the gas is stationary now after doing work if you leave the 

gas for some time it will again come to rest that is there will be no visible macroscopic 

motion of the fluid that is present inside piston cylinder assembly. 
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So, this means that you have done work was certainly done on the gas by virtue of the 

weight or the force that you apply over a distance. Now we want to generalize the 

principle of energy work equivalence to systems like this. In the previous case, when we 

did work on this sphere by lifting it up we said that the work done has gone on to 

increasing the kinetic energy of the sphere. Now what has happened to the work done? 

So, this system a system of gas present in a piston cylinder assembly is not a single 

sphere it has many many many many fluid molecules.  

So, in the continuum description we think of this system as we think of this collection of 

fluid molecules gas molecules as a system, which is prescribed by a variable such as its 

volume and its temperature. Now you have done work on this system and you have 

compressed it what has happened to the work that you have done well. Since you have 

completely insulate the system this work that has been supplied to this system clearly has 

not gone to increase the potential energy of the system nor has it increased the 

macroscopic kinetic energy of motion of the fluid molecules of the fluid, because 

initially the fluid at rest and finally, also the fluid is clearly at rest.  

So, what has happened to the work is that it has gone on to increasing the internal energy 

of the system and internal energy is a new concept that comes from thermo dynamics and 

it has a role to play even in fluid mechanics because we will see that these notions or 

principles are helpful while understanding the principles of conservation of energy and 



energy balance even in fluid flows, internal energy is that part of energy associated with 

microscopic or molecular degrees of freedom. 

So, what has happened is that when you do work initially the gases at a temperature T A. 

Now from elementary kinetic theory that you may be aware from physical chemistry or 

some physics courses earlier, you know that the temperature of a gas is related to the 

average kinetic energy of motion of the molecules gases. Of course, compressed 

ultimately of molecules and these molecules are always in constant motion even though 

they even though on the average gas appears stationary or static, but microscopically at a 

molecular level all the molecules are moving at a very high velocity and the temperature 

is a measure of the average kinetic energy of motion of the molecules. 

When you apply a force over a distance there by doing work on the piston, you are 

compressing the gas and the work that you have done has been has gone on to increase 

the average kinetic energy of motion of the molecules and therefore, it has gone on to 

increase the temperature.  

So, this energy of motion kinetic energy of motion associated with molecular degrees of 

freedom is essentially characterized as the internal energy that is the energy that is 

internal to the fluid that does not manifest in macroscopic senses such as potential energy 

or kinetic energy, but it is actually characteristic of the molecules that comprise the fluid 

is called the internal energy.  
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So, what we have said so far is that when you have an insulated container when you do 

work on a gas by placing a weight, the work that you do has increased the internal 

energy of the system. Because, clearly the gravitational potential energy has not change 

nor has the kinetic energy changed. Because, the gas is stationary macroscopically 

speaking there is no visible bulk motion of the molecules. So, internal energy work done 

can change internal energy this is an experimental fact of the molecules of the gas. Now 

is this the only way to change internal energy the answer is no, we can also change 

internal energy through an entirely different route.  

So, imagine in state B now the gas is in state B with volume V B temperature T B. Now 

imagine removing the insulation the thermal insulation there by you are now allowing 

the beaker or the piston cylinder assembly with gas present at temperature T B to transact 

energy with surroundings by virtue of transfer of heat. We know from experience that 

whenever you have a hot body in present in a cold atmosphere, you know that that hot 

body will eventually cool down and there is a transfer of energy that is heat transfer that 

happens from the hot body to cold body.  

That is what will happen eventually you will have the system with temperature T B and 

volume V sorry temperature T A because, it has lost all the energy to the surroundings, 

but volume is still V B. Now, imagine heating the system using a burner such that you 

have provided enough energy. So, that eventually you are now reach the state where you 

have reach the state where you have temperature T B and again volume V B. Now once 

you are reached temperature T B you can insulate the system and this will be identical to 

the state B so the state B that you had here and the state B that you had here are identical. 

Because, they have the same volume and same temperature, but what is important to 

understand is that the way you have reached the state B is entirely different in this two 

cases. In the first case you compressed an insulate a gas present in an insulated cylinder 

from an initially state of T temperature T A and then you apply it you did work by 

applying a force and that resulted in a new state with temperature T B and volume V B. 

Now, you removed the insulation thermal insulation and allowed the gas to cool down to 

the ambient temperature T A. Again you reach T B the previous state B through an 

entirely different process namely, by transacting heat with by exchanging heat from 

surroundings by let us say having a burner.  



So, what is important and this is the important lesson from first law of thermo dynamics 

is that fluid systems such as piston cylinder assembly containing gas, macroscopic 

system which innumerable molecules. They are characterized by not just by their 

gravitational potential energy or there macroscopic kinetic energy of motion, but they are 

also characterized by their internal energy and this internal energy can be changed by 

doing work as we have seen or by exchanging heat. 
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So, this is the statement of first law of thermo dynamics, that first law of thermo 

dynamics it states that the change in energy of a system is equal to the rate at which heat 

is transferred to the system and sorry the amount of heat transferred to the system and 

amount of work done by the system. So, let me write down all these things in words and 

then we will discuss the sign convention. So, this is change in total energy of the system 

is equal to amount of heat transferred to the system, this is the amount of work done by 

the system on the surroundings.  

Let us understand the implication of this equation from the example that we just did. 

Initially we said that so let me write this equation again dE is small delta Q minus small 

delta W. In the first case we said that we had a system where you had T A V A and you 

applied you insulate the system. When you insulate the system then there is no heat 

transfer with the surroundings. So, small delta Q is 0. 
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So, the change in energy is equal to minus small delta W, if you do work on the system 

then small delta W is negative. So, negative of negative is positive. So, the energy 

increase positive that is the system has increased its energy which is what we said and it 

makes intuitive sense as well now if the system does work. So, let us imagine another 

case again insulator if the system does work on the surroundings it is going to lose 

energy. So, dE will be negative. So, if work done is positive if small delta W positive the 

system is doing work on the surroundings then the system will lose its energy. 

So, that is the meaning of the sign convention. So, there can be other sign convention. 

So, you must be careful about other sign conventions. The other common sign 

convention is that heat transfer to the system is positive as we said here, but also work 

done on the system is positive in which case the first law will read as dE is dQ plus dW 

small delta Q plus small delta W. Another point I will just mention in passing, but not 

spend too much time on is the nature of the differentials here dE in thermo dynamics is 

called an exact differential whereas, small delta Q and small delta W are called delta of 

something is n in exact differential. 

This is because in a these quantities such as work and heat they are not functions of, I 

mean the amount of that work you transact depends on the path the way in which you go 

from state one to state two whereas, energy is a function only of the initial and final 

states. So, quantities like energy temperature pressure they are called state functions 



because, they just once you know the thermo dynamic state of the system, you have let 

us say you have temperature and pressure you can say what its density is, what its energy 

is, regardless of how the system was prepared. It is independent of the history of the 

process by which you have reached that particular state. 

So, quantity such as energy, pressure and temperature they are called state functions in 

thermo dynamics whereas, work and heat clearly you can reach the same state by doing 

completely work or by doing heat. So, clearly work and heat are not state functions it 

depends on how you carry out particular process. So, they are called path functions. 

Therefore, you cannot you cannot write work or heat as an exact differential. So, they are 

denoted by a delta the infinitesimal work done is denoted by delta rather than d because 

it is not an exact differential, but more of this will be done in the thermo dynamics 

course, but we will not do this right now. 
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Now, we will rather proceed to generalize this first law which we initially wrote for a 

finite amount of heat or work that is transfer to or from the system, and we related that to 

energy changes in the system. But in fluid mechanics, we do not look at we do not look 

at systems where you look at a finite amount of heat transferred, and then you take out a 

work in one shot. Things happen continuously in many engineering operations. So, we 

need to generalize this to a form in which we talk about the rate at which energy is 



changing in the system to the rate at which energy heat is transferred to the system and to 

the rate at which work is done by the system.  

So, we are going to generalize this to flowing system where things change with time 

continuously. So, the rate of change of total energy of the system is equal to the rate at 

which heat is transferred to the system minus the rate at which work is done by the 

system. So, Q dot is the rate at which heat is transferred to the system and W dot is rate 

at which work is done by the system, this is the rate at which energy of the system 

changes with time rate of change of energy of the system. 
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Now, what is the energy of the system? The energy of the system of course, comprises of 

the internal energy plus potential energy macroscopic potential energy by virtue of its 

elevation with respect to datum or a ground level plus macroscopic kinetic energy. Now 

we want to use Reynolds transport theorem to convert the rate of change of energy of the 

system to the rate of change of energy in the control volume. So, remember in Reynolds 

transport theorem we always write E system as volume of the system rho e dV where e is 

e divided by mass energy per unit mass small e is the total energy per unit mass.  

So, small e is nothing, but the internal energy plus unit mass plus the kinetic energy plus 

unit mass kinetic energy is half m v square, if you divided buy mass you will get half v 

square plus the potential energy per unit mass the potential energy is m g z, z is the 

elevation. So, these are this is k E per unit mass; this is potential energy per unit mass.  
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So, this is and V square is the magnitude square of the magnitude of the velocity is given 

by the vector velocity v dot v. So, we want to now generalize this to control volume kind 

of a kind of a situation formulation. In order to use the Reynolds transport theorem we 

have to say remember the Reynolds transport theorem, we have to use dN dt of the 

system. This is nothing, but d dT this is the Reynolds transport theorem of cV dV rho eta 

plus integral over c s rho eta v dot n dA over all the control surface. This is the rate at 

which a quantity like momentum energy changes within the control volume.  

This is the flux term that takes mass momentum or energy inside or outside the control 

volume by virtue of flow within flow to into and out of the control volume. So, now we 

are going to say N is nothing, but E sorry n is capital E and eta is e by mass which is e 

small e. So, the rate of change of energy of the system as written in terms of the variables 

relevant to a control volume is rho e this is the local rate of change present in the control 

volume plus the flux term rho e dA. This is something that we have seen frequently 

before for mass conservation and momentum balance.  
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So, it is same here now remember, when you do the Reynolds transport theorem, you 

identify the control volume and you say that the system and control volume coincide at 

time t 0 system at time equals to t 0 system is the same as control volume, but at a later 

time you know that the system is going to move out of the control volume. So, this is t 

naught plus delta t system is moved out of the control volume, but we are now looking at 

the instantaneous rate of change of energy of the system.  

When the system and the control volume are the same at some time t naught. So, if you 

want to apply the first law of thermo dynamics at that instant, when the system and 

control volume of the same are the same, then the rate at which Q dot minus W dot is the 

rate at which work heat is transferred and the rate at which work is done for the system is 

the same as that for the C V, because the system and the C V coincide at the time t equals 

t 0. So, the first law of thermo dynamics the rate form of the first law of thermo 

dynamics becomes this is equal to d dT integral over C V rho e dV plus integral over the 

C S rho e this is a flux term.  

Now this is the rate at which work is done by the system or the C V, rate of work done 

by C V on surroundings rate at which heat is transferred to the C V. So, this key thing is 

you should notice by C V on surroundings this is to C V on surroundings. This is very 

important when we do the problems in energy using energy balance. Now that completes 



the statement the formal statement of energy balance, but now of course, we have to sort 

of write this in terms of many contexts that are relevant to fluid flow. 
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So, first is what is the rate at which work is done by C V, what is the rate at which work 

is done by C V on the surroundings that is positive when work is done by the C V on 

surroundings, when work is done on the C V it becomes negative. What are the various 

types of work? So, in order to understand and appreciate this let us imagine typical 

process that will happen in much fluid flow equipments. So, let me draw a container in 

which fluid is coming in and going out and there may be a shaft and which has rotary 

blades which rotate by virtue of the rotation of the shaft and this is the area cross 

sectional area of the shaft C S area cross section area.  

So, fluid is coming in like this and going out like this and let us now draw what the C V 

is sorry let us now draw the C V by demarcating the C V form the surroundings using the 

control surface. So, the line marked in red the dotted line is my control surface and 

whatever is presenting whatever is present inside is my control volume fluid is 

continuously coming in and going out. Now, what are the various types of work? So, 

there is an area here where the control surface is cutting across where fluid is flowing in 

that. Let us call that area A f, where the flow is happening the rest of the area.  

Let us call it A i and of course, this area where the control surface is cutting across the 

shaft which is rotating is A S. These are the three different types of areas that we can 



distinguish. So, the rate at which work is done is due to various reasons work done by the 

shaft work. So, whenever you have a shaft that is rotating and when the C V is cutting 

across the shaft, there is a stress on the solid surface and there is a force therefore, and 

since there is the shaft is also rotating; that means, that there is a force that acts with a 

velocity and therefore, there is some work done. 

Because of this rotation of the shaft, if the shaft rotates and does work on the C V that 

becomes negative; on the other hand if the C V rotates the shaft and therefore, the work 

is done by the C V on the surroundings delivering useful work for the surrounding, then 

it becomes positive quantity as per our convention. Now, the rate at which work is done 

by normal forces on the C V on the C S that is control surface the rate at which work is 

done is by shear forces and if there are other contributions the rate at which work is done 

by other reasons.  

Now, remember one important fact is that a force does work only if the element on 

which it acts moves in the direction of force displaces in the line of action of force. What 

this means is that, if you look at there could be fluid flow here by virtue of it there could 

be a stress here due to this fluid flow, but this control surface is stationary it is a rigid 

stationary boundary in which case there is even though there is a force acting there is no 

motion therefore, there is no work done. Since, no work done on the internal area A i that 

is what we try to conclude from this simple idea that force does work only if the element 

over which it acts moves in the line of action of force displaces.  

So, there is no work done in A i the internal area. Now if you look at the shaft work if 

you look at A S then there will be a stress I am just sort of. So, this is the C S that is 

cutting there will be a stress in the solid surface over which the control surface is cutting 

across and therefore, there is a shear stress and there is an associated motion rotatory 

motion. So, there are forces associated with there is work rate at which work is done 

either by the system on the surroundings or by the surroundings on the system whenever 

the control surface cuts across a rotating shaft. So, there is a rate at which work is done 

and that is called the shaft work. So, that shaft work is what is denoted as W dot S or W 

dot shaft. 
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This is because of the rotating shafts, which may either deliver work to the system or 

which may take work away from the system. So, work output from the C V is considered 

positive, this is an example of a turbine which delivers work and work input to the C V is 

negative is an example of a pump, where you have to expend external energy to increase 

a pressure head of a fluid. Now the shaft work and then you have work done by normal 

and shear stresses.  
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So, we will look at this case by case work done by normal and shear stresses. So, the rate 

at which sorry so work done is simply F dot ds. The rate at which work done is small 

delta W small delta T limit small delta T going to 0 is nothing, but F dot v. So, let me 

denote all vectors with an underscore F dot v. So, F is nothing, but the stress vector that 

is acting on the surface dotted with v, but you have to integrate it over the entire control 

surface, where there is flow as well as there is motion.  

So, remember that there is a work done only if there is a motion on the motion of the 

element on which stresses are acting in the line of action of the force as we have been 

repeating. Now, sigma is nothing, but sigma normal which is in the direction of the unit 

normal plus sigma tangential or shear which is in the direction perpendicular to the 

normal. 
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So, the rate at which work is done W dot due to stresses fluid stresses is nothing, but 

sigma n times v dot n dA over the control surface plus integral sigma tangential dotted 

with v dA. Now this is the normal rate at which work is done by normal component to 

the stresses this is the rate at which work is done by shear or tangential component to the 

stresses. Now this is the work done by on the entire control surface. So, this is the work 

done on the entire control surface by the shear stress. So, work done by the control 

surface on surroundings is the negative.  



So, this is the work done on the C V. I am sorry So, this has to be this is the work done 

on the C V by the, this is the work done on the C V, if you want to know what is the 

work done by the C V on the surroundings. So, work done by the C V on the 

surroundings is nothing, but minus. So, the normal component of the work W dot normal 

is minus the negative of whatever we have written because, this is basically the work 

done on the C V, but the work done by the C V on the surroundings is the normal 

component, due to the normal component of the stresses is this and due to shear is 

nothing but minus sigma t dot v dA. 
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Now, what are the various components to the shearing forces? There are three types of 

areas. One is the area over the shafts sigma t dot v, this we already I have accounted it as 

the shaft work. So, this entire thing is called the shaft work minus integral sigma t dot v 

dA over solid surfaces, this is the A i part minus A flow part sigma t dot v dA. Now over 

the entire A i internal area surface, which we just if you look at the general figure that we 

drew in the over the entire internal area surface. Velocity is 0, because the fluid is 

stationary.  

So, even though there is a stress that is acting there is no work done because the velocity 

is identically zero. So, this drops out this was already taken into account as shaft work W 

dot shaft. So, the only that is left for us to understand is this, but imagine that if you 

have. So, where the flow area is where the inlet or outlet is actually present this is A 



flow. So, if velocity is acting like this and the tangential stress act in the direction 

perpendicular to the velocity, if you choose your control surface such that the velocity is 

normal to the control surface. Then v is perpendicular to the sigma stress tangential 

stress. So, v dot sigma t is 0. So, by carefully choosing the control surface you can 

actually have the tangential stress on the inlets and exits to be zero. 
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So, we can by carefully choosing the control surface such that the velocity is normal to 

the control surface, then the tangential component to the sigma t stress is acting 

perpendicular to the velocity. So, the stresses acting like this velocity simultaneously the 

perpendicular. So, there is no the dot product is 0 of this two vectors. So, the shear 

component of the work, there are three types of areas that we said one is, let me just 

draw the internal area, the flow area through which fluid entering and exiting and the 

shaft area, which is cutting across the control surface.  

So, there are three contributions to the shear work, one is due to the shaft work which we 

have already separated or so that we do not have to include one is due to the work done 

at the internal areas that we said is zero because even though there is a stress there is no 

velocity. So, sigma t dot v is identically 0 and in the third case we had the work done at 

the flow areas and there it is 0, because the stress and the force and the velocity are 

orthogonal or perpendicular to each other. So, W dot shear is 0 because, we have already 

taken into account the shaft work separately.  



Once we understand this and the normal component to the work is nothing, but integral 

minus integral sigma n this is the work done by the C V on the surroundings. C S sigma 

n v dot n dA. This is the work done by rate at which work is done by C V on the 

surroundings due to the normal component of the stresses. We will see a little later that 

the normal component of the stress comprises of both a pressure which is acting 

compressively if you know.  
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So, sigma n is minus p because, if you take a surface with unit ward normal n pressure is 

acting in the direction of minus n p the pressure acts is the direction minus n. So, sigma n 

is p minus p and then you also have some viscous shear stresses acting in the normal 

direction viscous, we should not call shear stresses viscous normal stresses, but these are 

usually negligible they are neglected. 

So, sigma n is minus p to a good approximation. So, W dot normal is nothing, but if I 

substitute this here the two negative signs will cancel out. So, p v dot n dA over the 

control surface. So, the total rate at which work is done is nothing, but the shaft work 

when the control surface cuts across rotating element such as shafts, which will typically 

convey energy in or out of the system convey work in or out of the system times p v dot 

n dA.  
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So, the first law of thermo dynamics for a control volume eventually becomes. So, 

eventually becomes Q dot minus W dot shaft minus integral p v dot n dA C S and minus 

W dot shear in general, we said that can be carefully by choosing the control surface 

appropriately we can set it to 0 exactly. So, this is equal to the rate at which energy is 

changing and that is the rate at which energy is changing within the control volume plus 

the rate at which energy is entering or exiting the control volume by virtue of flow, this 

is on application of Reynolds transport theorem.  

Now, I can take if you look at these two terms they are identical. So, I can bring this term 

out here to write Q dot minus W dot shaft is d dT integral rho e dV plus integral e plus p 

by rho times rho v dot n dA. this is something I can do by just multiplying and dividing 

by rho I can do this very easily.  
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So, where e if you remember is the specific energy that is energy total energy per unit 

mass, which is the internal energy plus unit mass plus the macroscopic kinetic energy 

plus unit mass plus the macroscopic potential energy per unit mass. So, we further write 

this in the following manner, Q dot minus W dot shaft is d dT integral C V, this is C S, C 

V rho e dV plus integral C S, I am going to write it as u plus then I also have a p by rho p 

by rho plus half v square plus g z rho v dot n dA. Now in thermo dynamics this quantity 

is called the enthalpy per unit mass specific enthalpy, p plus u plus p by rho is called the 

specific enthalpy p enthalpy p per unit mass of the fluid, but that is in thermo dynamics.  

But in fluid mechanics, we normally do not do this for a specific reason. So, I will come 

to that in a minute. So, remember that we are choosing the control surface choose control 

surface such that, v is perpendicular to n at in and out flow such that W dot shear is 

identically zero. That is at the inlet V dot n is minus V and V dot n is V at the outlet. You 

should always choose your control surface, the velocity vector is perpendicular exactly to 

the or the velocity vector is exactly perpendicular to the control surface. 



(Refer Slide Time: 44:14) 

 

So, there is no component in the direction parallel to the surface. So, that is something 

we can always do when we choose our control surface, this is v, this is n at the inlet. So, 

v dot n minus v this is V this is n at the outlet. So, v dot n is plus v both the vectors are 

pointing in the same direction at the outlet, where both the vectors are are pointing in the 

opposite direction at the inlet.  

So, we can write further d dT of integral rho e dV over the C V is nothing, but rate at 

which heat is transferred to the system minus rate at which shaft work is done by the 

system minus integral over all outlets. I am separating outlets and inlets, now e plus p by 

rho rho V dA plus integral over all inlets e plus p by rho rho V dA am taking into 

account this minus v dot n is minus v at the inlet and plus v at the outlet, that is why you 

are getting two different signs at the inlet and the outlet. 
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Now, I am going to do one more thing I am going to assume the flow is steady, I am 

going to simplify this flow is steady which means that d dT of rho e dV is 0, because 

nothing changes with respect to time within the control volume. So, all you will get is 

integral over C S outlet e plus p by rho rho V dA is integral over C S inlet rho V d A plus 

Q dot minus W dot shaft.  

If the flow is if you have uniform flow at the inlet and the outlet and uniform property 

such as energy and so on, then I can trivially do the area integral to write summation 

over all outlets e plus p by rho times rho V A is summation over all inlets e plus p by rho 

times rho V A plus Q dot minus w dot shaft. In a steady flow rho V A in is rho V A out 

that is mass conservation that is equal to rate at which mass is entering or leaving the 

system. 
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So, if I divide by m dot it is throughout I get summation over outlets e plus p by rho is 

summation over inlets is equal to e plus by rho plus Q dot by m dot minus W s shaft by 

m dot. Now this is the rate at which heat is transferred to the system to the C V by the 

surroundings this is the rate at which mass is flowing in. So, this combination is denoted 

by small q this is the heat input to the C V per unit mass and this is the shaft work output 

per unit mass. So, that is the these are given special names small q and small there is no 

rate associated with it, because you are dividing the rate at which heat is transferred by 

the mass flow rate and likewise the rate at which work is done by the system of the C V 

by the mass flow rate.  

So, they will be a we are not no longer rates, this is the rate at which heat is transferred 

per this is the heat transferred per unit mass and the work done by the C V per unit mass 

there is no rate associated with their anymore. So, summation over all outlets u plus V 

square by 2 plus g z plus p by rho at all outlets is summation over all inlets the same 

quantity this is at outlet this is at inlet plus small q minus small w s. Now this is the 

energy of the fluid at the outlet is in some sense this is the energy of the fluid at the inlet 

why is the energy of the fluid at the outlet changes, it could change from energy of the 

fluid at the inlet, because you are transferring heat in the C V or you are taking out work 

from the C V. 
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Now this is true for any fluid, but in fluid mechanics at least in this course, we will now 

restrict ourselves to incompressible fluids. Fluids, where rho is a constant that is it is 

independent of pressure there is no change in the density of the fluid, because of the fact 

that there are pressure changes in the flow. So, the pressure becomes a mechanical 

variable it is no longer a thermo dynamic variable that is the pressure. Since the pressure 

changes do not alter the change in density do not alter the density of the fluid. 

That means you cannot take the pressure to be a thermo dynamic pressure it is simply 

mechanical pressure. So, it is often convenient to keep all the mechanical quantities 

together and to move the thermo dynamic quantities summation V square by 2 over all 

outlets plus g z plus p by rho is summation over all inlets V square by 2 plus g z plus p 

by rho, this is at outlet this is at inlet plus q plus u out minus u in or let us put it minus q 

minus small w s, this is not a rate.  

So, it is minus u and minus u and minus q. So, this is valid for incompressible fluids, 

now because we are now setting thermo dynamic variable aside from the mechanical 

variable. And we will stop at this point, and we will try to give a physical meaning for all 

these terms in the next lecture of our course. 


