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Welcome to this lecture number 17 on the NP-TEL course on fluid mechanics for 

undergraduate chemical engineering students. In lecture number16 we started discussing 

the integral energy balance. 
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So, let me briefly recapitulate what we did before proceeding further. In order to derive 

the integral energy balance the underline fundamental principle is the first law of 

thermodynamics, which says that the change in total energy of a system is equal to the 

amount of heat transferred to the system, minus the amount of work done by the system. 

So, this is heat into the system, this is work by the system. So, this is the sign convention 

that we use, that the work done by the system on the surroundings is positive and the 

work done by the surroundings on the system is negative. That is the sign convention 

that is normally used in engineering thermodynamics. So, we also pointed out that in 

engineering applications you will always have continuously flowing systems. 
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So, it is good to rewrite the first law of thermodynamics in a rate form, which says that 

the rate at which the energy of a system changes is equal to the rate of the heat 

transferred to the system, minus rate at which work is done by the system on the 

surroundings. So, Q dot means it is a rate at which heat is transferred to the system and 

W dot is the rate at which work is done by the system on the surroundings. Now, in order 

to convert this to a control volume kind of an approach, control volume kind of a 

formulation this gives, we have to use the Reynolds transport theorem as usual. Which 

will give and before we do that we realize that the energy of the system is equal to the 

volume of the system of the specific energy, times which is energy per unit mass, times 

density which is mass per unit volume integrated over the volume of the system. So, we 

want d d t of this, so which is d d t of this. 
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In order to do this we have to use the Reynolds transport theorem which will tell us that 

this is nothing but the rate of change of energy of the control volume. Remember that 

when we use the Reynolds transport theorem, we always imagine that you have a C V, at 

sometime t0. The system and C V coincide, the system and the C V are exactly the same 

at time naught. But C V is fixed in space, its independent of time but the system which I 

am marking in red and blue at a later time, blue is at a later time, t 0 plus delta t the 

system would have moved out of the C V by virtue of flow. 

And the rate of change that we are talking about of the system is that, at instant at that 

particular instant of t 0what is the rate of change of energy of the system, and that is 

given by Reynolds transport theorem in terms of the variables pertaining to the control 

volume as follows. Rho e av plus integral over the control surface Rho e V dot n d S or 

dA. If you have to use dA let us keep using d a, is equal to Q dot minus W dot. In order 

to understand various contributions to the work interactions between the control volume 

and the surroundings, 

we imagined in the last lecture drawing a general kind of an engineering equipment. 

Which is typical in many fluid mechanics applications. Where you had a shaft and the 

shaft has a rotor which could be an impeller, which is rotating at some angular velocity. 



And the system sorry the control volume is the blue line and we want to write the 

balance about this control volume and you want to understand what are the work 

interactions. Now there are three types of areas as we said in the last lecture, the internal 

areas Ai, where there is the velocity of the fluid is 0then these areas through which flow 

is happening, A f at the inlet and outlet and this area over which the control surface is 

cutting across the rotating shafts that can be procured out of the C V to the surroundings. 
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So, there are three types of areas, the work interactions as we said last lecture is simply 

force dotted with displacement. The rate at which work is done by this. So, first we 

discuss the rate at which work is done by the C V on the system and then we took a 

negative sign. So, rate at which work is done is delta W by delta t so ds by d t is the 

velocity. So, rate at which work is done is F dot v. Now, all we know in fluid mechanics 

is the stress vector. So, W dot is integral of the stress. Stress is force per unit area as we 

have been mentioning, over the entire control surface area. Now, the entire control 

surface area has three contribute types of areas one is Ai A f and A shaft. 

So, we have to split this integral into three areas. Now, before we do that we also said 

that the total stress vector can be written as the normal component plus the tangential 

component .So, this is work done by the C V on the system. So, let me just put it as WC 



V sorry work by the surroundings on the C V. So, let us just write this as delta W 

surroundings. When we want the work done by the C V on the surroundings we will take 

the negative signs. So, let me just do this right now. So, rate at which work is done by the 

surroundings on the C V is nothing but integral sigma n n over all the control surfaces 

plus sigma t dot v dA integrated over all the area. 
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So, let us split the normal and tangential component separately, integral over C S sigma n 

n dot v, dA plus integral over C S sigma t dot v integrated over dA. Now, sigma n is 

now, let us now split this further. Sigma n n dot v dA plus. Now, let us split this surface 

area into, control surface area into control surface over A internal areas dA plus control 

surface over flow areas dA, plus control surface over shaft areas dA. Now, if you look at 

the internal areas, the velocity at solid surface is of the control surface is 0, so this 

contribution is 0. If we look at the control surfaces over the flow areas, this can be, this is 

let say the flow. 

This is the direction of velocity, if you choose the control surface perpendicular to the 

unit normal to the control surface perpendicular to the flow direction, then the tangential 

stresses will act in the direction perpendicular to the velocity. So, these two vectors are 

orthogonal. So, this can be set to 0. If n is perpendicular to v. If the unit sorry, if the unit 

If v is perpendicular to the control surface, that is if n is parallel to v that means that the 

velocity vector and the shear vector are orthogonal to each other so that is 0. Now, this 



contribution is not 0 because whenever there is a rotating element and the C S is cutting 

across it there is a stress and then there is a velocity in the direction of stress. So, this is 

the shaft work which is denoted as W dot shaft, rate at which shaft work is done. 
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So, rate at which shaft work is done by the surroundings on C V. So, we are still looking 

at the rate at which work is done by the surroundings on the C V. So, this is integral over 

C S sigma n n dot v, dA plus W shaft. Now, rate at which, but the quantity that we are 

interested in is rate at which work is done by C V on the surroundings. It is minus 

integral C S sigma n n dot v, dA plusor minus because it is negative of the previous 

expression W shaft. 

Therefore, the integral energy balance becomes d d t of integral rho e av integral over 

control volume, plus integral over control surface rho e n dot v dA is equal to minus 

integral sigma n, n dot v dA minus W shaft, plus Q dot. So, this is the simplification that 

we get after we use the fact that the shears tresses the rate at which the work is done by 

the shear stresses are 0 on the internal areas, and as well as the fact that the shear stresses 

cannot do work at the inlet and exit as long as you choose the control surface, such that it 

is perpendicular to the inlet velocity vector. So, that the velocity vector and shear stresses 

vector are perpendicular to each other. 
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So, finally we get, but you also know that sigma n is minus p. So, if you take, if you 

remember our very first discussion on hydrostatics. If n is pointing out wards then 

pressure is pointing in the direction of minus n. So, this is the normal component of the 

stress but pressure is directing and acting in the direction of minus n. So, sigma n is 

minus p, so but there are also we pointed out in the last lecturer that there are also normal 

viscous stresses. Which are usually negligible in liquids like, fluids like ariel water. 

So, we get the following expression d d t of integral rho ea v, C V plus integral rho e, n 

dot V, dA, C S is equal to minus W dot shaft plus Q, plus integral p, n dot v, d A. Now, 

we can pull this, both these expressions haven dot V times A. 
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So, we can pull this to the other side to write rho e av, C V integrated over C V plus 

integral over C S, rho times e plus p by rho n dot V dA is minus W shaft plus Q dot. So, 

this is our final simplified energy balance. We will further simplify it by assuming. Now, 

we will assume certain things, that it is uniform flow, first you will assume steady flow, 

uniform flow where the properties are uniform across the inlets and outlets of the control 

surface. 

 So, that the integrals can be simplified, we will of course relax this assumption little 

later. And so we will derive try to simplify this energy equation for the special case of 

uniform and steady flows, wherein you will get summation and when we do this we 

should also realize that n dot v is minus V at inlets and n do tv is plus V at outlets. So, 

the integral over the series will become summation over outlet, rho e plus p by rho times 

V dA is summation over inlets rho e plus p by rho, not V dA just V a minus, W shaft 

plus Q dot. 
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So, you remember that the specific energy, specific total energy per unit mass is the 

internal energy plus per unit mass plus the plus kinetic energy per unit mass plus kinetic 

energy per I am sorry the kinetic energy per unit mass plus he potential energy per unit 

mass. So, e is u plus half V square plus g z. That is something that we should keep at 

back of our mind. So, we will write summation over outlets u plus half V square plus p 

by rho plus g z, times rho at outlet at rho V A at outlet is summation over inlet u plus 

half V square plus p by rho plus g z at inlets, rho V A minus W dot shaft plus Q.  

Now, rho V A for a steady flow at the inlet should be equal to rho V A at outlets. This is 

mass conservation, if there is only one inlet and one out let then you know that, the rho V 

A at inlet is rho V A outlet minus m dot. S, we can divide the entire which is the mass 

flow rate. Divide the entire equation by above equation by the mass flow rate to give u 

plus half V square plus p by rho plus g z at outlets. So, let just specialize to the case of 

single inlet and single outlet. Out is u plus half V square plus p by rho plus g z in minus 

W dot shaft plus Q dot. 
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Now, this is the most general energy balance, this is the special form for a energy 

balance for a steady flow uniform flow also with single inlets and outlets. If we restrict 

ourselves to incompressible fluids. Incompressible fluids are fluids, where as we are said 

sometime back a rho is constant that is it is independent of pressure. The pressure 

changes that are associated with the fluid flow does not change the density of the fluid 

flow. Then the fluid is said to be incompressible, in such a case the pressure p is purely a 

mechanical variable. It is not a thermodynamic variable. So, people normally write, take 

u where u the internally is a thermodynamic variable, so take u to the other side to write 

this as, p by rho half V square plus g z at outlet is p by rho plus half V square plus g z at 

inlet, minus W dot shaft minus u out. 

So, we are trying to divide the entire equation by W dot. So, you will get W dot shaft by 

m dot Q dot by m dot. Now W dot shaft by m dot is nothing but small w. It is the work 

done by the C V per the unit mass of the fluid, there is no rate because we are dividing 

one rate with another. This is the rate work done by the C V on the surroundings. This is 

the rate of mass flow, the two rates will cancel of to give the rate at which the work is 

done by the C V on the surroundings per unit mass of the fluid. And you will get minus u 

out minus u in. Minus u sorry you have already taken the minus sign out, where small Q 

is the rate at which heat is transferred to the fluid per unit mass. There is no rate sorry 

there is no rate the heat transferred to fluid per unit mass. There is no rate involved with 

here. 
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So, finally we have a simplified equation for steady flow, uniform flow that is the flow 

property such as velocity, density, internal energy there are in variant with the cross 

section at inlets and outlets. Steady flow, uniform flow, single inlet and single outlet and 

finally, we also have incompressible flows. The simplified energy balance, integral 

energy balance becomes simply. So, let us start with p by rho that is conventional V 

square by 2plus g z. So, I can start with p by rho here also, p by rho plus V square by 2 

plus g z minus W s. The rate at which shaft work done by sorry the amount of shaft work 

done by the fluid work by the C V per unit mass of the fluid, minus u out minus u in 

minus q. 

So, what we are saying essentially is that, for an incompressible fluid the heat transferred 

can affect only the internal energy for example, the heat that we are putting in cannot go 

into increasing any of these. That is why these two terms are club together. But suppose 

for the moment let us say that the C V is adiabatic. That is when the C V is adiabatic q is 

0, no heat is transfer to or from the fluid. 
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So, you get p by rho plus half V square plus g z at outlet is p by rho plus half V square 

plus g z at inlet, minus W s minus u out minus u in. Now, there is no heat transfer. Now, 

the question that we can ask is, will this term be 0 or non 0. There is no heat transfer 

whenever there is a fluid flow. So, it turns out that whenever there is a fluid flow 

happening within pipes or you know in equipment like pumps or compressors, there is 

always an irreversible transfer or conversion of macroscopic mechanical energy to 

internal energy. 

So, this is fact that whenever there is a fluid flow the viscous action of the flow of the 

fluid, the viscous nature of the fluid always dissipates energy from macroscopic motions 

to microscopic degrees of freedom. Which is essentially the internal energy of the fluid. 

So, u 0 minus ui is always greater than or equal to 0. The equality happens when you 

consider a fluid with 0 viscosity. Of course there is no real fluid with 0 viscosity, if you 

consider a hypothetical or ideal fluid that has 0 viscosity, then you will have no 

conversion of mechanical energy to internal energy. This is called the viscous dissipation 

of energy. 

So, this term will always be greater than or equal or to 0. Now in the context of fluid 

flows. This is the energy that is lost so these are termed as losses, viscous losses because 

the macroscopic energy that you have supplied by way of kinetic energy or gravitation 

potential energy or the pressure has been lost to internal energy. These are termed simply 



as viscous losses. So, in engineering fluid mechanics we will simply for incompressible 

flows, with all the assumptions of steady uniform flow one inlet and one outlet and 

incompressible fluids. The energy equation is normally written as plus g z at inlet minus 

W s, this is the shaft work done per unit mass of the fluid by the C V on the surroundings 

minus W loss. 

This is the amount of energy lost to internal energy by the viscous dissipation action. So, 

this is a new, we have to tell what the losses are in order to solve a problem. But we 

certainly know that there are losses. How these losses are computed for simple systems, 

we will come to a little latter when we do differential balance of momentum. But right 

now we know for sure that losses are there. Whenever there is a fluid flow there will be 

loss of energy from macroscopic form, be it pressure head or kinetic energy ahead or the 

viscous loss sorry or the gravitational potential energy in any form to the integral degrees 

of freedom which is the internal energy. But if you are looking everything from a 

macroscopic point of view, that is energy that is lost from the macroscopic side, so we 

just term it as viscous losses. So, normally then therefore, we write the internal energy 

balance like this. Sometimes in engineering fluid mechanics. 
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you divide this entire b y g, acceleration due to gravity to get p by rho g plus V square by 

2 g plus z at outlet, is p by rho g plus V square by 2 g plus z at inlet minus W s by g 

minus W l by g. Now if you look at this equation, each term has a dimensions of length. 



So, historically or traditionally people worried everything, people thought about various 

energies in terms of pressure heads. So, this the gravitational head. So, this is called the 

gravitational head because it has dimensions of length, a head called gravitational head. 

This is the kinetic energy head, this is the pressure head. Now, W s by g is denoted as h 

s, Wl by g is denoted as h l. There is no new information in this equation except that 

many times you see text books discuss this form of energy balance also. Where every 

quantity is represented in dimensions of length which essentially represents height of 

column of liquid in the gravitational potential, gravitational potential energy sense. 
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So, that is why all these terms are defined in term the form of heads. Now that is the 

simplest form of energy balance. As we told in the last lecture that if for the non uniform 

flows, that is where the velocities are a function of the cross section area. Then it is just 

as we introduced the momentum correction factor in the last lecture. For the flux terms in 

the energy balance you may have to carry out this integral. So, you have half, so if you 

recall you have a term of the type rho half V square, v dot n dA over the control surface. 

So, this is essentially if you are thinking about outlet v dot n is positive. So, if you are 

considering about inlet v dot n will be negative V. But essentially you will have to 

evaluate an integral of the form half V cube dA, where V is the function of the cross 

sectional area, now you want to be able to write this in the form of a new correction 

factor. Alpha times half V average cubed times rho V A ism dot. 



So, let us write this as sorry times rho A. So, we will just write rho A. We want to be 

able to write, instead of doing this integral. We want to write this integral as though if it 

is a uniform flow. Then the answer will be half V cubed times rho A. Now, we substitute 

V by V average because the flow is non uniform. But you also introduce a correction 

factor, this is called the kinetic energy correction factor. So, in order to find what this 

kinetic energy correction factor is, we have to simply… 
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So alpha is equal to one over area u by V average whole cube dA. So, if we use V for a 

pipe flow, laminar pipe flow laminar. So, V of r is some maximum velocity times one 

minus r square by R square. So we can calculate what is V average and then we can 

calculate alpha. So, for laminar flow in a pipe, alpha becomes2.Whereas, for turbulent 

flow in a pipe alpha is simply 1.04. So, you could for non uniform flows use the 

correction f actor kinetic energy correction factor. 
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So, for the simplest case special case of steady flow, uniform flow, incompressible fluid 

and then single inlet and single outlet. You get p by rho g plus alpha V square by 2 g plus 

z at inlet, is p by rho g plus alpha V square by 2 g plus z at outlet plus the head due to 

shaft work plus h due to losses, viscous losses, the head due to losses. So, this is the 

most, this is the special case where you assume steady flow, uniform flow 

incompressible fluid and single inlet and single outlet. But sorry we are not considering 

uniform anymore because you are removing the uniform flow assumption by introducing 

the kinetic energy correction factor. 

If the flow is uniform alpha is 1.If the flow is laminar alpha is 2 and alpha is 1.04 if the 

flow is turbulent. So, this is very close to one. That is because of the fact that the 

turbulent flow velocity profile is in fact uniform, very close to being uniform. Therefore 

it makes sense for us to approximate alpha to 1 for turbulent flows. So, that completes 

the basic discussion on energy balance. Now, I want to point out an important distinction 

between this energy equation, which we derived from the first of thermodynamics to 

another equation which many of us will be familiar with. 
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That is the Bernoulli equation, in if you look at the Bernoulli equation, if you are already 

familiar with the Bernoulli equation it may appear very similar to the energy equation. 

But let me try to derive the Bernoulli equation from the energy equation that we just 

derived. So, in general if we have a fluid, the fluid velocity. We define what are called 

stream lines. Stream lines are always parallel to the local velocity vector. So, in a fluid 

flow in a steady fluid flow, you can describe the flow pattern using a bunch of stream 

lines by plotting the stream lines. If you collect a set of stream lines you can form what is 

called a stream tube. It is a bunch of stream lines that are collected together it is like a 

tube. So, the stream tube, the surface of the stream tube itself are comprised of stream 

lines. 

A basic definition of stream line is that fluid velocity is tangential to stream line and 

there is no flow normal to the stream line. So, therefore, the stream tube is almost like a 

tube of a complicated shape but it is a still a tube, in the sense that there is no flow, net 

flow out of the stream tube in the normal direction. Fluid can come in and flow but there 

is no a flow in this direction because by definition the stream lines are parallel to the 

flow velocity vector. But this not like a rigid conduit because this stream tube is 

surrounded by a fluid and in general the fluid can exert stresses, viscous shear stresses. 

So, I want to apply the energy balance to this control volume, where you have a stream 

tube the stream tube is our control volume. Now we will make some major assumptions 



in order to derive the Bernoulli equation, that these will tell us the crucial distinctions 

between the Bernoulli equation that we are going to derive and the most general form of 

energy balance which is statement of first law of the thermodynamics. We will assume 

that fluid is incompressible, rho is constant. Second we will assume that there is no heat 

transfer from the outside to inside or vice versa, and there is no shaft work within this 

stream tube, no shaft work. We are just considering plain flow there is no reason for us to 

expect that there is a shaft work, present no shaft work. 
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So, these are the three major assumptions. Once we do this and further assume a most 

important assumption that the fluid is non viscous or inviscid fluid is hypothetical fluid 

with 0 viscosity. Once you do this we can simplify the energy balance to the Bernoulli 

equation. So, by making this specific assumptions that flows is incompressible and there 

is no heat transfer, there is no shaft work, most importantly that the fluid is non viscous 

inviscid, there is no viscosity. 

And we apply the energy equation to this specific control volume called a stream tube. A 

stream tube is essentially a bunch of stream lines that are present in a flow and we collect 

a bunch of stream lines and encircle them. And the stream tube itself the surface of the 

stream tube itself is comprised of the stream lines and so there is no flow in or out of 

stream tube to the sides. So, it can only come in and go out through the entry and exit. 



There is no flow in through, there is no normal flow through the sides of the stream tube. 

By definition the fluid velocity is parallel to the surface, it cannot go perpendicular. 

If you assume all these things then the most general form of the energy balance which 

we wrote with single inlet and single outlet for incompressible fluids is the following. V 

square by 2plus g z, V square by 2 g plus p by rho g. So, let me write p by rho g first as 

usual. p by rho g plus V square by 2 g, alpha plus z at in, is p by rho g plus alpha V 

square by 2 g plus z out plus h shaft plus h friction. This is the most general equation. 

Now, we are going to simplify this, we are saying that there is no shaft work 0 and there 

is no viscous shear stresses at the sides because we are assuming the fluid to be in 

inviscid or non viscous. So, no viscous stresses, the work done by the viscous stresses on 

the C V,on the control surfaces of the C V. So, that is 0.There is no viscous loss because 

the fluid is inviscid. So, this is a very critical assumption and we will assume uniform 

flow alpha is said to 1, that is further an assumption. So, if we do all this you will get a 

simple equation. Now p by rho g plus V square by 2 g plus z at inlet is p by rho g plus V 

square by 2 g plus z at outlet. 
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Now, this we can further simplify. The stream tube or further shrink the stream tube to 

an infinitesimal of infinitesimal thickness in the limit it becomes a stream line. So, this 

equation which is called the Bernoulli equation. The classical Bernoulli equation is 

applicable to an inviscid fluid, 0 viscosity to a stream line. 



It is applicable only between the two points along a steam line, along the same stream 

line of course we have made further assumptions such as steady incompressible flow. 

Which are less restricted assumptions but the critical assumptions for the application for 

the application of Bernoulli equation is an inviscid fluid and a stream line. Whereas the 

energy balance that we wrote is generally applicable to any control volume. And as long 

as you can supply the problem on with the information about what are the viscous losses 

you can completely solve it. And it is applicable to any flow of viscous liquid into any 

equipment like a pump or a piping network and so on. 

As long as we know what are the losses we can certainly solve that, most general energy 

balance equation internal energy balance equation. But this one is more restrictive the 

Bernoulli equation although it appears very close closely similar to the integral energy 

balance it is not, because it is applicable only to an inviscid fluid of course assuming 

steady and incompressible flow. And further it is applicable only along two points along 

a given g stream line. That is the very strict limitation on the application of the Bernoulli 

equation. Whereas the engineering energy balance equation sorry . 

Whereas the integral energy balance equation is always valid for any complex flow 

process that you may encounter which may have pumps and compressors. So, you can 

take into account what is the shaft work contributions and so on very easily. But you 

need to know what are the losses involved in a given situations. That is the major input 

to the problem, before we can solve a problem. So, we can ask the question, when can 

the engineering Bernoulli equation, sorry when can the Bernoulli equation be valid? 
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So, suppose you have a system like this, you have a flow past from a air plane model. 

You have a tiny air plane ,this is the model airplane and you have flow. Let us says the 

airplane is stationery when flow is coming like this, very close to the solid surfaces we 

see later that viscous effects will become important. This is called a boundary layer. So, 

here where ever I am patching with blue Bernouli equation is not valid. So, very close to 

the air plane surface as well there will be viscous effects that are very very important. So, 

the Bernoulli equation will be invalid in the blue patches but if you take a stream line 

where there is no blue patch then you can certainly apply the Bernouli equation between 

these two points, because you can assume that there is to a good approximation that 

viscous losses are negligible. 

They are never 0but they are not that important. Likewise let us consider another context. 

You may have a conduit like this and you may have a fan or a blower and fluid is coming 

in like this and going out like this. So, close to these solid surfaces, close to this solid 

surfaces viscous losses will be important. So, you can apply Bernoulli equation in the 

upstream and downstream of this blower or a fan along a stream line. But you cannot 

take the stream line across this fan because viscous losses become important. So, the 

Bernoulli equation is valid. So, p by rho plus half V square p by rho g plus V square by 2 

g plus z is a constant along this stream line. Tt is also a constant along this stream line in 

the downstream but the constants will be different because of the fact you have an 

equipment like a shaft or a fan which is trying to do work on the fluid and so on. 



So, clearly the Bernoulli equation is not valid in this region. So, the Bernoulli equation is 

a very simple equation and it can be used in many contexts to get a first cut result But in 

certain contexts obviously, the Bernoulli equation is not valid and you should know 

when to apply the classical Bernoulli equation and when to apply the integral energy 

balance. The integral energy balance is certainly more general in that it accounts for 

viscous losses and it also accounts for shaft work contributions, either in or out of the C 

V But whereas the Bernoulli equation of course cannot taken to account all these 

competitions. 

Now, this is a really what is I want to say about the energy balance, integral energy 

balance. Now, we have to apply this integral energy to some specific contexts. Now the 

contexts which I am going to discuss first is flow measurement. 
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So, the question that we are going to ask is in an industrial setting, where you have 

complex networks of pipe pipelines are going here and there. How can you measure the 

flow inline? One obvious way to measure a flow is of course, if at the exit of the pipe 

you collect the water and you measure the volume of the water for a given amount of 

time. That gives you a sense of what is the volumetric flow rate that is happening in the 

process, in the network of pipes. But if you want to know you want to do something 

inline, that is without having to wait for the exit of the flow, somewhat in between the 

network itself. 



If we want to know what is the flow rate which is very very important in many chemical 

engineering applications. How do you do that? So we want to do something within the 

pipeline network. So we have a set of devices called restriction flow meters for internal 

flows. That you have flow in conduits such as pipes or channels. And you want to know 

the flow that is happening at inside those pipes and channels. So these flow meters looks 

something like this. This is the general schematic there are of course specific details 

which we will come to a little later. The general schematic is as follows, this is the pipe 

line and the flow meter reduces the cross section of the flow and suddenly expands it. 

And of course the pipeline diameter is the same upstream and downstream. 

So, this is the general schematic. Now, far away the fluid is flowing with some average 

velocity V 1 and the diameter of this tube is D1.Now we want to know what is the 

velocity and given that we know what is the diameter. In order to do this we have to 

draw a C V. The C V is the green line that I am going to draw, it ad joints the cross 

section of the flow meter very closely. This is my C V. So, fluid is coming in to the C V, 

at station one and it is leaving the C V at some other station. Now, that is the C V that we 

are going to work with. Now, if you look out the nature of the flow, the fluid will come 

like this and it will go like this and there will be re-circulating zones of fluid. These, 

zones do not contribute to any flow rate and we are going to, lets draw the C V like this 

we are going to draw the C V. 

Where this is our C V ,let me draw the C V again. This is our C V. So fluid is coming in 

like this far away it is uniform and it is restricted deliberately by the flow meter. So, here 

the velocity will increase and because there is a sudden expansion there will be some re-

circulating zone so f fluid, like this in the upstream, I mean in the downstream of the 

contraction and the fluid eventually leaves. So, the idea is to measure in order to find 

what is the velocity. We have to measure the pressure drop between the stations one and 

two and using that we want to infer the average velocity of stream of the flow meter.  

So, that is the idea by measuring the pressure difference or pressure drop that happens 

between the upstream and downstream sections of the contraction of the flow meter. By 

measuring the pressure drop we want to be able to relate that to the velocity. So, what are 

the basic principles that we have? We have mass conservation, mass balance, integral 

mass balance and energy and energy balance. 
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So, the mass balance, so let us first write, let us also make some assumptions because 

this is a fairly complex problem cannot be solved without making these assumptions. 

First is steady in compressible flow and we want to consider the flow along a stream line, 

from points one and two. We will assume no friction and uniform velocities at stations 

one and two. So, essentially we are considering a stream line and we want to write, we 

will use the Bernoulli equation and correct it later, because we are assuming no friction, 

no viscous losses, no frictions means no viscous losses. 
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So, but it is not a good assumption, we will correct it later and we will also assume that 

the elevation is the same between points one and two. That is a good assumption. So, if 

you use the Bernoulli equation p 1 by rho V 1 square by 2 plus z 1,is p two by rho plus V 

2 square by 2 plus g, z 2,z 1 is approximately equal to z 2. So, that is there so p 1minus p 

2 becomes rho by 2, V 2 square minus V 1 square. Now if you use the continuity 

equation sorry the mass balance equation rho V 1 A1 is rho V2 A2. Since the fluid is 

incompressible density is constant. So, we can cancel it out. So, V 1 by V 2is simply A 2 

by A 1. We will stop here and we will complete the discussions in next lecture. Soon this 

discussion, on application of energy balance to the case of flow measurement. These are 

called flow meters. So, we will stop here now and thank you for your attention. 

 


