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Hello everyone, in this week we are going to study about different transport phenomena 

based problems that occur in different physical systems and we often encounter them in 

trying to relate or trying to estimate different process parameters or system design or 

performance prediction. 

(Refer Slide Time: 0:55)  

 
Now, in this class we are going to talk about a problem which is often encountered during 

combustion. 
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So, and this absorption of gas in liquid or liquid in gas is a very common thing in Chemical 

Engineering Process and the biggest application is this in the case of fuel droplet burning or if 

you have a gas liquid mass transfer taking place, droplet based chemical reaction. In all of 

these cases, the mass transfer plays a big and a very important role. 

(Refer Slide Time: 1:44)  
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Now, let us try to consider or try to visualize the picture let us say you have a, a droplet, a 

droplet could be of, the droplet could be of a liquid or gas, so if it is a liquid droplet, then the 

outside environment should be gas, so it could be like liquid droplet dispersed in a gaseous 

medium or liquid droplet spray, so this is an ideal example of the scenario of a fuel droplet 

burning. 

And if you are considering gaseous droplet, then you can consider that gas bubbling through 

a liquid pool or something you are having two phase boiling systems or you can think of 

bubbling of argon gas during in molten steel furnaces to improve the homogenization or its 

composition. So, there could be several such applications where do you encounter this gas 

liquid absorption. 

So, before starting to try to model this mass transfer phenomena from liquid to gas phase or 

from gas to liquid phase, it is very important to first list down or try to write the different 

assumptions that we are considering in this problem. So, the first assumption that we are 

considering let us say it is an isothermal process, we are not going to consider any 

temperature effects in the problem. 

So, of course, a fuel droplet burning or the case of gas bubbling through a chemical reactor 

are not isothermal process, they are not in practical scenarios they are not. But this would be 

the first assumptions that we would want in our problem to simplify it and so that the base 
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case scenarios can be obtained reasonably with not much of complexity to the problem. That 

is the reason why we try to add as much assumptions as possible to the problem and then later 

on to have a more practical, to have a more detailed understanding of the process you can 

ignore some of the assumptions and get to more realistic scenarios. 

The second assumptions we can think of let us say for the time being no chemical reaction, 

we will talk about today what happens when you have chemical reaction. But let us say for 

the first case we do not consider any chemical reaction. So, we ignore any chemical reaction 

effects. We also consider that the diffusivity whether its liquid to gas or gas to liquid 

whatever diffusivity is constant and it does not depend on the concentration of the mixtures 

or the components. We also consider that the shape of the droplet, both shape and size of the 

droplet is constant with time. 

Now, of course this is not always the case as we have talked about the burning of a fuel 

droplet, so as it burns the oil droplet shrinks, so it becomes like a shrinking core scenario. So, 

it may not be true always but this is, but if you consider them to be the shape as well as the 

size to be constant this will significantly simplify the problem and but still it will preserve the 

essence of the mass transport phenomena or the physics of the mass transport process.  

So, we write that the shape and size of the droplet is invariant with time. So, these are 

generally the assumptions and with these assumptions we can try to frame the mass transport 

model. So, these are the assumptions. So, let us look into how we can write a species balance 

in a small elemental section in this droplet. 

(Refer Slide Time: 6:35)  
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I will draw the droplet once again and we consider the radius of the droplet to be R and we 

have already said that R is fixed so this is, let us consider this the droplet to be a sphere or a 

spherical particle or spherical droplet, and the shape and the size does not change with time 

so R is not a function of time. 
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So, let us consider a small section of this, this is, consider this to be a sphere, so consider a 

small spherical element of delta r, let us say the flux in the radial direction is at r is N Ar and 

at r plus delta r is written like this. So, how do we write? So, the flux across this small 

elemental section, so we multiply 4 pi r square, it is the surface area of a sphere of having, or 

a spherical region of radius r that is N Ar, so this is the inlet flux and minus we have 4 pi r 

plus delta r whole square N Ar r plus delta r, so this is the inlet flux at the radius r. 

And next we have the outlet or the flux that is coming out and the difference of these two is 

written down by the accumulation term which is the rate of change of the flux, in, rate of 

change of the concentration in this domain or in this volume segment, so the volume segment 

since this delta to be infinitesimally small we can write surface area multiplied with the 

thickness that is 4 pi r square delta and we write the concentration as CA. 

So, now one more assumptions to this problem that we missed out is that we consider the 

particle to be spherical, consider drop to be spherical and assume, and have theta as well as 

phi symmetry, this is generally very common for spherical coordinate problems that we say 

that change in the concentration or the flux along the theta or the phi direction does not 

happen, so it is symmetric in the theta and the phi angular planes. That is the reason why we 

consider the change in the flux or the radial profiles only in the r direction. 

So, as there is no convection to the problem, the flux if you are considering only a binary 

system and then it is very easily you can write the flux to be the based on the ficks law of 

diffusion. So, instead of grad C, I can write del C del r because theta and phi symmetry exist. 

So, if I take the limit of the next step delta r tending to 0 from the above equation we get del 

CA del t is equal to D AB by r square del del r r square del CA del r. 

So, this is the differential equation for this problem where you consider only radial diffusion, 

unsteady radial diffusion of the species in the droplet or in the spherical particle. Now, what 

about the boundary conditions?  
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So, the initial condition at t is equal to 0 we have CA is equal to CA naught, there are two 

boundary condition at r is equal to 0 you have d CA d r to be equal to 0, this is the symmetry 

condition. And at r is equal to capital R which is the surface of the droplet or the sphere we 

say CA is equal to CA star, and this CA star can be related or can be considered to the 

equilibrium solubility limit. 

You can also calculate that concentration, you can also have like the from the idea of the 

interface mass transfer you can also calculate out the balance of the fluxes. So, there are two 

possible conditions at the surface, one is the continuity of the concentration or you have 

continuity of the flux. So, in this case we are having this concentration as to be the 

equilibrium concentration and we are assuming that the outside concentration is same, so 

there is the concentration outside the droplet is constant. 

So, let us try to non-dimensionalize this equation and how do we try to solve. So, see the, if 

you recall when, in the first week we talked about the steps of modelling a problem, the first 

thing we should try to do is to write down the assumptions because our model is based and is 

dependent on the assumptions that we make and assumptions should try to simplify the 

problem. So, that is the first thing that we should try to do. 
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The next step is of course try to make this non dimensionalizations because non dimensional 

helps in proper scaling of the terms and to find out that which term is having different orders 

of magnitude or not. So, based on this idea I try to scale the different terms or the different 

components here, so concentration is scaled in this way the form of theta, eta is r by r, tau is 

the diffusive time scale. 

So, if you see here both theta varies in between 0 and 1, eta also varies in between 0 and 1. 

And similarly, tau is something that if it is too large then the problem becomes steady state. 

So, tau also varies to a positive value and in the same order of magnitude we can also get a 

fair idea about what is the order of magnitude beyond which the effects or the time effects are 

not important. So, if tau is too large then it means that, I mean you are you are achieving a 

steady state scenario or the dependence at that longer time scale is not important.  

So, if you try to do this the equation that you get is will look something like this. And here 

please note that each of these term not only they lose the dimensionality but they are also 

scaled appropriately of order 1. So, if tau is not of order 1, but let us say of order 2 or order 3, 

then it simply means that the time dependent term is insignificant compared to the right hand 

side.  

So, this will also give you a fair idea about the time scale of the problem beyond which the 

transient effects are not important. So, typically if tau is more than 10, you will see that d 

theta d tau term is order of magnitude less compared to the right hand side because the right 

hand side all of the terms are of order 1, eta is of order 1, theta is the order 1, so everything is 

the order 1 on the right hand side. 

So, now if tau becomes of order 2, then this term on the, temporal term on the left right hand 

side is having one order less in comparison. So, then we mean that this problem achieves a 

steady state, so this will give you a physical idea of the time of the problem beyond which the 

transient effects are not important, and tau is the, I mean r square by d is essentially the 

diffusive time scale to the problem. 

So, I can write t star as R square by D AB, so this t square is the diffusive time scale or the 

time scale to this problem. So, if t is greater than 10 t star you do expect that the transient 

effects are insignificant. What about the boundary conditions? So, the initial conditions also 

transformed by this scaling and the boundary condition we have eta is equal to 0, d theta, d 

eta to be equal to 0 and for eta is equal to 1 you have theta is equal to 0.  
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So, of course this problem can be solved with the help of the legendary polynomials, but 

there is one more transformation you can make to make this problem look much simpler. 

(Refer Slide Time: 16:39)  

 

 
So, let us apply the transformation, theta is equal to u by eta. So, if you do this transformation 

you will find that this equation du d tau when converting it to I mean sorry d theta d tau 
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getting converted to du d tau will look something like this. And the initial condition, so 

instead of theta we make a transformation in the dependent variable, instead of theta 

everything is represent in terms of u. 

So, tau is equal to 0 you have u is equal to eta because theta was equal to 1, so u is equal to 

eta. Boundary condition at eta is equal to 1, you have u is equal to 0 because theta was equal 

to 0, here theta was equal to 1. And at eta is equal to 0 you will be having u is equal to 0 

because d theta d eta was equal to 0. I think if you just try to think yourself you will realize 

that why d theta d eta is equal to 0 will lead to the condition that u is equal to 0. I mean it is 

very straight forward. 

So, if theta is equal to u by eta what you will get, so if I try to do d theta by d eta that will be 

equal to u by, minus u by eta square plus 1 by eta du d eta. So, this is equal to 0 so which 

means u is equal to eta du d eta. Now, at eta to be 0, it means u is equal to 0 and that is what 

we get this boundary condition. 

So, now this equation can be solved very easily using classical separation of variables 

technique, I mean of course the previous version of the equation, separation of variables, I 

mean the previous equation can also, I mean this equation can also be solved by separation of 

variables and the auxiliary equation corresponding to the spatial part will give you legendary 

polynomials. 

And in this case the auxiliary equation or the solution to the auxiliary equation or the 

auxiliary ODE using separation of variables will give you sine and cosine functions. So, let 

us just try to do this quickly so you consider, sorry, u eta tau is equal to two linearly 

independent functions. So, 1 by F dF, d tau is equal to 1 by G d2G d eta square and let us say 

we call this as minus lambda square which is a constant. So, this is based on the separation of 

principle which is, sorry separation of variable is something we have already done before.  

(Refer Slide Time: 20:37)  
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So, we frame the two auxiliary ODEs. So, the first auxiliary ODE is d F by d tau, so this will 

give you the solution that F of tau is equal to e to the power minus lambda square tau and 

another one was, okay. So, solution to this G eta will be in terms of sin and cosine functions. 

So, if we apply the boundary condition at eta is equal to 0 you have u is equal to 0, this gives 

you B should be equal to 0 and based on the condition that eta is equal to 1, u is equal to 0, 

this gives you that lambda is equal to n pi, where, so this is n, where n is equal to 1, 2, 3, so 

for simplicity not to confuse with eta, let us make it m pi. 

So, this is just you are in the standard template of the separation of the variables. So, we 

know that the solution of u, solution of u is the linear superposition of all corresponding 

values of m. And we club the constant A and the constant that we have got, let us say I 

missed a constant here for the spatial part something like let us say C, C1, so I multiply A and 

C, let us mark this as C, on or something like D or something. So, multiply A and D as like 

Cm e to the power minus m square pi square tau sin m pi tau. 

And next we try to I mean the immediate thing we can do is that since u, I mean theta is equal 

to u by eta, so I can write this as one in terms of eta, so it is eta. So, we have to also find this 

constant Cm and for that we use the principle of orthogonality. 

(Refer Slide Time: 24:18)  
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So, if you just use them you will find out that Cm turns out to be eta sin m pi eta d eta by 

integration of sine square, m pi eta, so you will be getting 2 minus 1. So, theta is equal to 

minus 2 by pi and then we have minus 1 by m e to the power minus m square pi square eta 

sin m by eta and there will be one more eta. So, this is m, so I mean this theta is nothing but 

CA star minus CA divided by CA star minus CA naught. 

So, the molar rate so the important parameter here is the molar rate of absorption in the 

droplet, I mean from the concentration profile this is an important parameter that we are 

interested to find out. So, what is this molar rate of absorption? It is nothing but 4 pi capital R 

square is the molar rate of absorption, that is the surface area multiplied with the diffusive 

flux at the surface. 

So, this is D AB d CA by dr at r is equal to capital R. So, you all, since you already know the 

this molar, this function, sorry this concentration profile you can find out that this what would 

be the molar rate of adsorption, I mean absorption, I am just trying to convert this in terms of 

eta. So, this will give you a fair idea about, I mean from the concentration profile to estimate 

the molar rate of absorption in this drop or the effective mass transfer that is taking place in 

this drop.  

I hope all of you got a fair idea about how this mass transfer effects can be computed or 

evaluated. Of course, it is subjected to the assumptions in this problem, but how these can be 
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incorporated in the problem and still we get a fair idea of the concentration profile as well as 

the mass transport rate from the droplet or this mass transfer in the dispersed phase systems 

from each of the individual particle. 

So, in the next class we will see that how this idea can be extended to the case of the problem 

when you have droplet mass transfer along with chemical reaction. And then, we will see 

some more Chemical Engineering problems related to mass transfer and heat transfer. I hope 

all of you have enjoyed today's class, we will see you in the next lecture. Thank you. 
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