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Hello, everyone. So, we are going to talk about today in this class from where we left in the 

previous lecture regarding the derivation of the Maxwell Stephan's theory for multi-

component diffusion. Now, if you recall, this is applicable for the scenario when you have 

more than 2 species, or it is not a binary system. And essentially, we are talking about when it 

is not a dilute case and concentration of each of the species is important.  

(Refer Slide Time: 01:01) 

 

Now, in this case let us just quickly get started, and if you recall that this is, there is a balance 

at the molecular level, there is a balance between the frictional resistance and the driving 

force So, from this balance, I mean, this is the Genesis of the derivation of this Maxwell 

Stephan's theory where we try to balance 2 opposing forces, one due to the mass transfer 

driving force, another due to the frictional resistance.  
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Now, coming to the mass transfer driving force all of us are aware of the fact that the force 

acting on this molecule in terms of per mol unit is nothing but the gradient of the chemical 

potential at constant temperature and pressure. Now, from thermodynamics, we know that the 

chemical potential for gas or for liquid system is generally represented in terms of RT ln P 

whereas where you write P for in the case of gas, T and for the case of liquid, with essentially 

the activity coefficients or for ideal solutions is just a mass fraction, or essentially mole 

fractions.  

Now, from there, we can calculate out the differential d mu i, and you can get an estimation 

on this force exerted on the molecules due to this mass transport, fundamentally from the 

thermodynamics.  

48



(Refer Slide Time: 02:25) 

 

The critical part comes when we try to evaluate or understand the frictional resistance. Now, 

let us consider there are 2 components, and then we will try to extend this idea for multi 

components. There are, let us say that we have 2 species in the system and we represent their 

individual molecular velocity as or the molecular level velocity as UA and UB.  

Now, it is said, I mean, fundamentally explained by Maxwell in his book on dynamical 

theory of gases, that the fictional resistance exerted by A onto B is proportional to the relative 

difference in their velocities, or it is proportional to the relative velocity. So, this F or the 

force is proportional to the relative velocity of a particular molecule that is acting on the other 

molecule.  

So, this is the case of F, this A. So, similarly it can be written down for this, trying to estimate 

the relative velocity between any 2 species in the case of multi component systems. Now, you 

can ask, or you can ask or question, that there is a point that how come this remaining 

derivation, this, this force, this RT, Xa DBA, how diffusing, etc., is coming into the picture.  
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For that, we have to go a little bit into the background of the derivation of this Stephan's multi 

component diffusion. And it tells you that, let us assume we are having this particle or a 

molecule and across its boundary it is experiencing a force. So, we write the force in terms of 

pressure versus the projected area at Z, let us say, this is a small elemental section, please, 

excuse my drawing, and this is the pressure acting at Z plus Delta Z. So, the force per 
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volume, if I try to write in this terminology is p into A at Z. So, the difference in the force 

acting at the 2 surfaces is equated, or is proportional to the density of the individual species, 

the relative velocity and the volume of this small elemental zone or the region.  

So, we all know that the rate of change of momentum is actually contributed to the force and 

that is what is the basis behind this statement. And then if you take the limit of delta Z 

tending to 0, what we will get is dPi dZ is proportional to rho 1, rho 2, u1 minus u2. Now, if 

you consider a situation of ideal gases where we know that this pressure is equal to density 

times the gas constant times temperature in that case, from this expression here, what we can 

write, I mean, we can write in terms of force per mole as minus RT by p1. So, I am just 

converting one of the densities in terms of the pressures, dp1 by dz, rho 2, u1 minus u2. So, 

this entire quantity, (RT by p1) dp, dz. We already know that this is nothing but our what is 

called this force acting on the particle. It is minus rho 2 u1 minus u2. And this rho 2 can be 

written down from a Dalton’s law as minus rho into X 2, isn’t it E 1 minus U.  

And then if you invoke this proportionality constant, you can have a proportionality constant, 

something like a K or something like that. And if you rearrange, so in introducing the 

proportionality constant and rearranging, you can get F1 is equal to minus RT by D x2 u1 

minus u2, where I can write this D is nothing but RT squared by this proportionally constant, 

this area, A and this rho, sorry not rho this is P.  

So, you can just work out the intermediate step and you will, this is what you will be getting 

in this scenario. So, this is how we get this, what we just have explained you, that F is equal 

to RT and this constant, I mean, this constant, that balances, the force with respect to the 

relative velocity actually gives the origin of the diffusivity or the diffusion coefficient.  

Similarly, we can write this force acting on the other particle I mean, this is FB and then we 

can write for FA and can easily understand that this can be generalized for multiple 

components where you need to sum up or take into consideration of all the other species that 

are in the system considering their relative velocity.  

So, if you want to calculate the force exerted on particle A, so what is the relative velocity of 

a, with all the N minus 1 species, that needs to be taken into account here. So, this is per 

mole. So, we convert it into per unit volume of the mixture, and this is how the forces or 

these terms looks like. Now, it is time to balance these 2.  
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Now it is time to get the complete picture. So, what we do, we try to balance the, so there is 

this, this part is the driving force and then you have this part as the frictional, from the 

frictional resistance, derivation that is what you get. So, then we do some algebraic steps. I 

mean, you can clearly follow that we try to take in both sides and write this d mu/dz as in this 

form.  

And we write the, instead of writing the individual mole, mass fractions, or the, sorry, the 

mole fractions, we can write it in terms of the total concentration. So, this CT, whatever we 

write the CA plus CB, or essentially this is nothing but CI. Now, this flux are the molar flux. 

So, please note that the molar flux here is written as the concentration into the velocity.  

And please note that this velocity is not the bulk velocity, but individual molecular 

movement, or the molecular scale speed, or the molecular scale velocity of the particles. So 

please do not get it confused with the bulk scale velocity. So, since we are considering, so 

there is the confection due to the molecular movements and that in the macroscopic world 

gets transferred into diffusion.  

So, this is that, molecular level conviction or the molecular level, mass transport due to the 

Brownian motion mostly. So, if you rearrange these equations or these terms, you are likely 

to get this expression. So, this is the Maxwell Stephan's relation for multi, which is valued for 

multiple components. And for, I mean, it, the, the condition of this dilute and all those things 
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need not to be invoked. So, now let us look into some of the simplified scenarios based on 

this equation. 
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For example, what happens when you have a binary system instead of a multi component 

system? So, this is like the generalized form. So, instead of a generalized form, what happens 

if we try to write it down in the case of binary system. So, just simply instead of you remove 

the summation terms and you write the components in terms of CA and CB.  

And instead of writing these individual velocities, it is better to write them in terms of the 

diffusive fluxes. So, this NA and the NB are essentially the diffusive flux. So instead of 

writing the individual molecular velocities, which is difficult to find out, we write there, 

diffusive fluxes.  

(Refer Slide Time: 11:59) 
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Now, the situation one, when you have equimolar counter diffusion, so what does it means 

that the flux of A and B are equal and in opposed direction. So, NA is equal to NB isn’t it? 

one of the common situations is that when you have distillations, so the flux of the vapor to 

the liquid phase and the flux of the liquid transferred to the vapor side are almost equal. So, 

this is one scenario.  

So, from these 2 equations for the binary system, we can write down that if NA is equal to 

minus B, you just do the simple algebra, and you arrive at these expressions of the diffusive 

fluxes. And please note that these are very similar, these expressions are very similar to the 

Fick's law. But here, the condition of being diluted or stagnant medium is not required or is 

not needed. But it is a specific case where you see that in the condition of equimolar counter 

diffusion the expression of the flux for binary system converts or simplifies to the Fick's law. 

I mean, both of these 2 analogous.  

(Refer Slide Time: 13:07) 
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What happens when you have one of them to be a stagnant component. Let us say the flux of 

one of the component say B is 0. And this is a scenario that you generally get in a membrane 

separation. So again, we start from the 2 generalized expression for a binary system, and then 

we put one of the fluxes to be 0.  

So, if you do that, these are the simplified equations. I mean, these are the equations that you 

are getting. And please note that even though that we set the flux of one of the component to 

be 0, this NB to be 0 still, there is a existence of the gradient or the spatial gradient of the 

other component. And that is in the direction or in the positive direction of the diffusion of 

the other component.  

So, this is an important point to note. And of course, this is this you can express the comp, I 

mean, the concentration CB. So, this CB can be written returned down as CT minus CA. So, 

everything we are getting in terms of A.  

(Refer Slide Time: 14:19) 
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Now, please note that to this equation, to this equation, if we add the additional, I mean, if we 

add this extra condition of being dilute is invoked, where CA is much, much smaller than CT 

provided, one of the component is 0. So, the condition of stagnation is there, and now we are 

working the dilute condition. So, if this condition is satisfied, CA is much, much less than 

CT, then what we get that CT minus CA will be close to equal to CT.  

So, this equation gets transformed into NA is equal to the infusibility into the gradient of the 

concentration of A, and which is nothing but the Fick's law. So, now you can see that this, 

this Stephan's equation can be simplified if you invoke these additional constraints like binary 

system, stagnant medium, and dilute, you get back your Fick's law. So, this Fick's law is a 

simplified version of the Stephen-Maxwell law provided certain assumptions are met here.  
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Moving ahead. This is the mass transport, generalized mass transport equation of the scalar of 

transport equation, whether you have temperature or whether you have a concentration, this is 

the generalized equation. R is the additional reaction. So, this R is the reaction term to the 

bulk of the fluid.  

So, depending on whether you are having a homogeneous or heterogeneous reaction, this 

additional reaction term either could be in the main equation, or it could be present as a 

boundary condition to this problem. I intentionally written down this diffusivity inside the 

derivatives because it is seen, or it could be possible that there is anisotropic diffusion in the 

medium that diffusion in different directions are different, or diffusion is also function of the 

concentration.  

Generally, for most problems, this velocity field is obtained from the momentum 

conservation equation questions. And that is how this problem is one way coupled when you 

try to solve a mass transport problem associated with the fluid flow. The fluid flow equations 

are solved independently and then that is coupled through the mass transport equations. There 

is one way coupling through this velocity term or the velocity field.  
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So next, let us move to the thermodynamic (this) review. So just let us try to recap the 

different thermodynamic relations that we are all have studied already before by now and it's 

a time to recap them. So, the Dalton's law is for the case when you have non-reacting ideal 

gases. The Lewis-Randall rule is generally used to specify the fugacities. The Raoult's law is 

trying to relate the equilibrium vapor pressures.  

Henry's law is balance of the, or is a relation or the connection between the liquid phase 

concentration to its vapor pressure. Then we have the Antoine's equation that how you can 

estimate the vapor pressure of pure component from the temperature. Generally, ABC, these 

are the constants. Then we have the Vant-Hoff's relation. It is to find out the heat of the 

reactions, as well as the equilibrium rate constants.  

And then we have the Clausius-Clapeyron statement where again at different temperatures 

what is the vapor pressure of the system, and finally the equations of the state which for real 

gases, because all the systems are not in ideally, so you have the Van-der Waals equation, 

then you have the more complex, this Redlich-Kwong, Peng-Robinson, Virial type equations. 
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So, now let us talk about the free energy and the phase equilibrium criteria. So, this Gibb's 

equation that we know is, free energy is equal to the internal energy PV minus T, and here the 

symbols represent the usual meaning. So, this pressure, V is volume, this temperature and S 

is entropy.  

So, if we take, try to take the partial derivatives, then this is what we get. So, from Maxwell's 

relations, we already know that dU can be represented as T dS minus P dV plus the 

summation of all the components per chemical potential into dN. So, if I try to substitute, if I 

try to substitute this expression into here, I get dG is equal to minus S dT plus V dP plus this 

summation term, and this is nothing but the Gibb's Duhem relation. So, for constant 

temperature and pressure, we get dG is equal to summation of mu dN. Because dT and dP 

will be equal to 0.  
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Now, in the case of multiple components and multiple species. In the case of multiple 

components and multi-species, this dG is generally written summation of both the species and 

the component. So here i represents the species and p represents the phases. So here C is the 

species, the number of species, and m represents the number of phases. So, for any 

component, so for the criteria, I mean, the criteria for phase equilibrium, all of us know this, 

the change in the free energy should be equal to 0.  

So, the criteria for free energy is del G should be equal to 0. This is fundamentally from the 

thermodynamics. We know this that it has to be equal to 0. So, for any component, i this 

summation Ni p will be equal to constant because if del G is equal to 0, it means G is equal to 

constant, or the summation is equal to constant. And which essentially means that for each 

individual component, so, for each individual component, and this summation of all the 

phases of the particular species i has to be equal to constant, isn’t it? That is from that idea 

only we wrote this thing that the summation of all the individual components would be equal 

to the constant. So, we can rewrite something like this instead. So, this is valid for each of the 

species, dNi p is equal to 0, isn’t it?   

If I just take the derivative on both sides, so it will be called to 0. And this implies that I can 

write dNi for one phase is equal to the minus of the summation of the rest of the phases. 
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Now, what does this simply imply that from this, what we get is that dG is equal to, this p is 

equal to 2 to m, I am writing in a slightly different way, instead of writing 1 to m, I take one 

inside, instead of writing 1 to m, I take one inside, and I try to write this together. So, I can 

write this to be mu i, so it is mu into N, is not it? It is mu into d into this mu dN. So, I can 

write dNi to be of phase 1 is equal to the summation of the remaining phases. And from there 

I can rewrite dG as this is i is equal to 1 to c. I can write this. I hope this is clear to everyone.  

Now, what is the immediate implication of this? The immediate implication tells you that this 

condition, that this equation will be equal to 0 only in the case when we have this to be equal 

to 0 and if this is equal to 0, it means that mu i of phase 1 is equal to mu i of phase 2 is equal 

to mu i of phase 3 of all the phases. So, that means the chemical potential of the ith species in 

each of the phases has to be equal for the condition of equilibrium. So, the del G of the 

system, the Gibb's free energy is equal to 0, implies that the chemical potential of the ith 

species of the individual species in each of the phases has to be equal.  

(Refer Slide Time: 25:55) 

 

 

Now, moving next trying to talk about thermodynamics of gas and the liquid state, we know 

that, when the ideal gas is at a constant temperature and it undergoes change in the state, the 

change in the free energy is equal to the work done on the system, not by the system. There is 

a big difference in the preposition here. So, it is the work done on the system.  
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And from the relation of the Gibb's driven relation that we have, we can easily write that del 

G is equal to V dP and if you try to integrate this out, considering the ideal gas relation PV is 

nRT you can easily get this expression. And we write delta G is the change in the Gibb's free 

energy. So, our reference state G naught is considered here. And that gives you nRT ln P.  
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So, this is generally the case for the gas phase system. And this idea can also be extended for 

the gas, liquid equilibrium case and this expression that you see is nothing but the this sort of 

the Henry's law and the partial pressure is equated, or is related to the liquid phase 

concentration. And then extending this idea, we can tell that at constant temperature and 

pressure this Gibb's free energy G is equal to mu into N.  

We just have seen this and from there, we can write that the chemical potential of the system 

for the, this liquid state is equal to RT ln this alpha into x. Now, in the case of the dilute or 

the ideal situation, this alpha is generally close to 1 that is the activity coefficient, and you 

can write this chemical potential to be RT ln x is the mole fraction of the liquid phase 

concentration.  

So, with this, I would like to close the lecture for this session. And let me just quickly 

summarize what we have and what we have studied. So, we have studied all the, these details 

on the mass transport phenomena based on the generalized Maxwell Stephan's theory for 

liquid for multi-component diffusion. Then we have also reviewed the Gibb's relation and all 
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the little thermodynamic expressions and formulae. Hope you liked it. See you in the next 

lecture. 
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