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Hey everyone. So, in this this is a follow up class on the neural networks, where we left off 

discussing about how do we do this training or learning process. So essentially, learning or 

training is can be done in two types; one is supervised learning, one is unsupervised learning. So, 

in this class we will focus on the supervised learning; unsupervised learning is something beyond 

the scope of this course again. 

(Refer Slide Time: 00:54) 

 
So, this what does this supervised learning actually mean? So, essentially supervised learning is, 

in a similar way, how do we learn from our teacher? So, teacher, parents, they try to make us 

learn about different situations of different problems, or our response to different inputs or 

stimulus; that is how we learn. How I mean, that is how we start to learn to behave, learn to talk, 

learn to analyze, learn to think, is that the different inputs that we received by our senses is 
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actually processed. And then we can draw a conclusion and then we can relate that what this 

actually mean. 

And then finally, for some unknown things, we can also try to relate this; based on our previous 

learning, we try to respond to that. So, in the same way, these ones the this idea of training or 

supervised supervision of the neural network is essentially estimation of these weights, or the 

unknowns in our parameter. So, now the model is fully equipped and as you feed some 

unknowns, it can immediately generate the output for any unknown value also; because, it is now 

a model equation. This is what the equation tells us if you have an equation y is equal to fx; and 

every all the parameters in the effects are known to you. 

Then, if you feed into x, it will generate the y as simple as that. Now, if the weights I mean the 

and the accuracy of this output or the value of the y is is better, when you have better choice or 

the values of those weights. So, these weights or the unknowns in the neural network model are 

essentially play a big role in the accuracy of the predictions. So, that is how the, this human thing 

also works. So, if when you are trying to learn something, the better you learn, the better you 

learn, the better would be your knowledge; and the better would be your application and your 

execution. So, the way this is done is there is a method known as gradient descent. 

(Refer Slide Time: 03:24) 
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So, let us say the function the activation function, or the function which is the result of the inputs 

or the output essentially. You can think of fi fj is nothing but the output essentially. So, psi is the 

activation function and you know that activation function is dependent on the summation of all 

the cumulative scaled inputs, multiplied with the weights. So, this is the weights; let us simplify 

it. Let us not write fj, let us read only f; so, this is wi, xi. So, if there are multiple inputs that is 

why I wrote fj; but this is a simplified case yi, wi, xi. So, this is the cumulative thing and written 

down as something like new. 

So, the error is defined as error E is generally defined as tp minus fp or let us says this; let us say 

f and this is summed over all the different outputs that you are having maybe, so, in a single case. 

So, this is like the NN output. So, in one case, for single output, there is only one output. And, 

but if you are changing different input variables, then different outputs will be coming. So, 

whatever this is, that is a reason why I wrote this I mean, these errors can be summed error also 

something like that, by changing different data points; or known data you can have different 

errors also whatever. 

And this is the test value or a known value, test value or which is known; and generally square is 

taken for this error. Why? is because it is squares are always positive; either square error or 

square relative error, this is what is known as, so the squared relative error. Now the, if you try to 

do a iteration of the weights, so this Wi, t is the iteration.  

So, existing weight is iterated with some correction; let us call that correction as Wi. This is how 

any just how you try to find out the roots of a nonlinear equation, you try to do the sort of 

iterations. In the same way, here the unknowns are being calculated based on the idea of the 

iteration, iterative calculation. And this is the correction to the existing value of the W, this is the 

correction term. 

So, now what is this correction term? This Wi t is equal to the differentiation of the error with 

respect to that particular weight, multiplied with a factor eta. So, this eta if you recall this eta is a 

sort of learning rate we call or the acceleration parameter. If you remember, I think in that 

multicomponent distillation, where we had the Newton-Raphson method. There was also this 

parameter alpha, where we said it is the acceleration. And if this learning rate is too small, then 

you will need more number of steps or iterations to attain the minimum error condition. So, the 

errors will be changing with iteration, is not it? 
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Now, this ideally, we have to find the case when the error is minimum, and take that value of the 

weights. So, if the learning rate is too small, then the contribution of the correction to the new 

weight in each iteration will be less. But, one advantage is that if the learning rate is too much, 

then it may not be able to; so the how does the curve looks like. So, the error that you have with 

the iteration will be like this, then again it will try to increase. So, we have to locate this 

minimum position. So, if the learning rate is too high, then it may even that; it may happen that 

the error overshoots the minimum position. So, that is one downside of a high learning rate. 

And a low running rate means it will take a lot of steps, to reach a lot of iterative steps to reach 

that minimum situation where the error is minimum. So, when error is minimum, that is where 

we can say yes, that is what we consider the best-case scenario. And we say that the weights are 

optimized; because for that whatever the weights that we have attained, gives us the minimum 

error. Sorry, this is not test value, this is train trained data. Yesterday, something after the 

optimization, we use or check; but this is whatever it is a known quantity, with which we are 

trying to optimize our weight. Now, the question is that how this dE, dWi this thing is 

calculated? 

So, you can see that this is equal to in this case, if the error is like this, this becomes 2 minus; this 

entire thing let we write as, minus 2 minus 2 eta. Then, you have tp minus fp xi, and dfp by del 

up. Because, ultimately fp is dependent on u, that is what we are writing dfp by d up. But, in that 

you are already having this, I mean this is a derivative with respect to Wi; so, xi will be coming 

from there. So, this is essentially the derivative of du by i, i by dwi; I hope all of you got that. So, 

first we are differentiating this, how do we are we getting this? So, essentially let me write it 

further down. 

How are we getting this? So, dE this is equal to by the chain rule if you write this is dE by dfp; 

then dfp by d up, then d up by dw. And this last part results into this xi; and this part results into 

the first part eta. Then, you have to 2 into this quantity, the squared term. So, now, the question 

comes how do you estimate or how do we estimate this this quantity, dfp by d up? And of 

course, this depends on the kind of activation function you have chosen. 
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So, the least mean square method tells you that; sorry, least mean square method also known as 

LMS method, tells you that this dfp by d up is approximately equal to 1. So, which the 

consequences that that this activation function is linear; this is the consequence for this case only 

dfp by d up will be 1.  

So, this value of dE by dWi will be equal to minus 2 tp minus fp, this is 1; so, dfp by d up to into 

xi that we have and this becomes 1. So, it is 2xi tp minus fp; so, the new weight will be found out 

by the existing weight and that t is equal to zero iteration. This is an random value, so this is a 

random value. That is what initialization tells you at the zeroth iteration or initially. And then 

you have this as, sorry, plus 2xi tp minus fp; this is the least mean square method. Next, we have 

generalized delta method. 
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This is another method. In this method, once again let me write down this correction factor as 

minus 2. This quantity is written down as fp 1 minus fp; and how it is possible that psi is 

sigmoidal function. So, in this case, the d up the activation function is sigmoidal in nature; then 

you get the differentiation as fp into 1 minus fp like this. So, this, so depending on what sort of 

activation function you have, the different methods are actually related of this error optimization; 

sorry, of this weights optimization. So, this is the generalized delta method that we see in this 

case. 

There are some other methods also; but these are the generally the popular ones. The most 

popular one is the least mean square, because a linear function is the most easiest the simplest 

version. If something does cannot be described by a linear relationship; then only we go for a this 

sigmoidal or nonlinear versions, exponential ramp and all those.  

And not ramp, it is exponential sigmoid Gaussian functions, and accordingly the methods for 

optimization of the weights also gets modified. So, using this method, we can essentially train 

our model. So, the as I said, the learning rate is very essential because learning rates controls the 

contribution of the error correction term to the mean this optimization of the weights. 

So, with iteration this correction needs to be added; and based on a situation when the error is 

finally minimum. So, as you can also see if error is minimum, this quantity that we see here also, 

tp minus tp will actually become small when error approaches when error is minimum. But, not 

zero, unless the error is zero, this term will not be zero; but, it will be minimum. So, the 

contribution of the correction at the minimum error also will be small; but please note that it is 

not a zero. 

Since, it is not zero; there is a possibility that these corrections, slowly this correction factor will 

further deteriorate the solution. If you are continuously adding something to the this optimization 

of the weight, so the weights will get again modified; and it will again move beyond the 

minimum error condition.  

So, at the minimum, it is not possible that that error is zero; but, it will be small. So, at the 

minimum location, the contribution of the correction to the weights will be minimum. But, there 

will be some still some nonzero contributions, it will not be zero. And in that situation, it may 
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happen that the final weights are slowly deviating from the minimum error condition; and again 

it starts to change, so the optimized condition is gone. 

That is where this learning rate eta plays a role. If the learning rate is too small; this region would 

be very nicely understood or captured; but it will require more number of iterations to reach that 

point. So, I think this is all that I have to talk about the neural network. Things are best 

understood as you try to solve a problem on your own. So, you can pick up any dataset around 

you. And try to prepare a model all by your yourself this neural network model, where you have 

this sort of, you choose any function, you choose some linear weights. So, if you are having a 

linear activation function, essentially, the model equation is very similar to the same as the first 

order model with some bias. 

If you are using linear weights, and let us say two or three data points, so not data points; the two 

or three inputs that you are having or variables that you are having in your system, then you need 

to frame your own neural network model, and you try to train it. Have some known quantities of 

your known value with that you try to train; and then you have some known data set for which 

the answer is known to you.  

That is considered a test set over which you apply this, this regression equation with the known 

regression coefficients or the known weights. We do not call regression coefficient here, we call 

them as weights. So, with the weights optimized, you apply this model for that known data set, 

and try to see how is the error. 

If you see that the, this test error, so there is something called training error; and there is 

something called test error. So, whatever we said here, this is actually the train error. Because, 

during the training, you are optimizing the weights; so whatever error you are getting is a train 

error. So, train error would be always very small. So, if you apply the same optimized model into 

the trained set only, the error will obviously be low; because it is low, that is why these are 

optimized. So, there is no point in checking your neural network on the train data set. You should 

try to check on the test data set. 
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So, always try to check the error with test data set, E test. And E test is something like this x 

sorry, the known response as I said y-test minus y the neural network of this x test values, 

divided by y test. So, these results you see that how it is performing; this gives a performance or 

of a neural network; and you can really realize this data set, a test data. I mean, you can also have 

a summation over all the x-test values, and see what is this error that you are getting. If this error 

is smaller than a tolerance value, you accept that model. And you consider that everything is 

properly optimized and you are getting reasonable outputs. 

We already these are checked with test data sets, which for which the values are known; but they 

are not fed into the system, they act as unknown to your model. So, that is how you, and the 

checking or the validation of the model should always be done over the test data set. So, the 

validation of any neural network model should always be done, be done using the test data set. 

So, test data set is also a part or a subset of the total data set, but it does not contain any values of 

a train data set. Because on the trained data set, things are already used to optimize your weights, 

or to find out the unknown coefficients, or the unknown parameters in your model. 
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So, always the test data sets should be used for validation of the neural network. So, more larger 

is the size, larger is the size of the test data set; the more reliable the results are, more reliable the 

neural network predictions are. So, this is something that should be understood. Then, also 

another thing I must also summarize here for the neural networks, that neural networks with less 

number of nodes; of course, satisfying the accuracy level.  

It is not that we only want low (number), less number of nodes satisfying the desired accuracy 

should be preferred over large number of nodes. You should at least try to find a situation where 

the accuracy can be achieved with less number of nodes. So, this is something these are some of 

the key points that one should always remember in working or deciding how many number of 

nodes should be chosen for this problem. And also, the number of nodes should satisfy the 

criteria. 

(Refer Slide Time: 24:30) 
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Number of nodes, let us say should be greater than equal to a number of weights, divided by 1 

minus accuracy, number of weights in your problem. This is not number of nodes, but the 

number of train data set; at least this much should be used. So, number of nodes or number of 

weights are the same thing essentially unless. So, you can say the number of weights, the number 

of nodes if you are having just one hidden layer, feed forward network. So, the number of 

weights is equivalent to number of nodes for feed forward network, feed forward network and 

one hidden layer. 

So, whatever the number of weights is what that matters, because they are only the essentially 

the the number of unknowns in your problem. So, the number of train data set should satisfy 

these criteria. And you should pay a close attention to the number of weights, and 1 minus the 

accuracy for this thing, whatever the desired level of accuracy we want to set. So, less than that it 

is not a proper training, if you if you do not have this number of data sets to comply this criteria; 

then it is inappropriate training. Or, in that case you need to reduce your number of weights or 

essentially the number of nodes. 

You cannot have too many number of nodes, if you cannot satisfy this criteria. So, these are 

some of the essential points that you should always remember while trying to frame, or prepare, 

or develop a neural network model. So, with this I think we will close this class on the neural 

network. I hope I could discuss quite some useful; I mean this neural network or the black box 

model, and this is a very upcoming topic. And slowly there are areas in chemical engineering 

where you see these neural network models to be utilized. And they are quite useful essentially, 

when you have systems where too much variabilities and too much of system parameters which 

cannot be effectively or physically model. 

That is why neural network comes in very handy. And these models can also be very useful for 

control systems also in process chemical engineering. So, I hope this is all that I have to say in 

this course on process modelling and simulation. Just a quick summary of this course that I 

would like to highlight is that here we have seen different types of processes starting from mass 

transfer, heat transfer, different types of physical models, multi-stage distillations. We have also 

seen in a heat exchanger networks, we have seen a lot of these first principle models; we have 

also studied different solution techniques, particularly handling PDEs numerical techniques. 
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We have seen software demonstration using console for solution of PDEs or distributed 

parameter systems. And then we also seen a software demonstration using Aspen Plus which is a 

steady state processor simulator, for chemical engineers to solve this industrial problem related 

to multiple unit operations connected together. So, I hope all of this is very useful to your career. 

I believe you have learned and gained a good fair amount of knowledge on this. Every of the 

topics that you we have discussed or touched upon is of course, to some extent on the 

introductory level. That is because of the limitation of the course time and the scope of this 

course; it is not a dedicated full course for only a particular topic. 

But, I hope this overview of or the introductory knowledge about the different types of model, 

model formulation techniques, model assumptions will essentially be helpful in your career in 

different aspects that you are involved in, starting from your project, starting from your higher 

education problems or problems specific to particular area. You will find some relation or 

usefulness of this course in the times to come. Thank you and wish you good luck with all your 

career. 
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