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Sampling distributions and the Central Limit Theorem

We are now looking at the sampling distributions of the mean. We started originally with the

random variable X, then we started looking at the sample mean X bar. We collected the random

variables into one group or set and we created the sample mean X bar, X1+X2 so on to Xn/n and

this is  also a random variable.  It  is also having the distribution,  but what is the type of the

distribution of the random variables forming the sample mean.

We are unaware of it, but rather than working with random variables X, as I said earlier we are

now going to work more with the random samples. We are going to work with a collection of

random variables and we are going to look at the sample means and use them to draw certain

inferences. So we should also know the distribution of the sample means, what population they

follow.

(Refer Slide Time: 01:38)

The question is we do not know about the population itself. We do not know about the original

population. We do not know whether this is normal or gamma or variable or what are the type of

distribution. We do not know its parameters, but all we have is only the random samples and they



themselves are forming another distribution. Fortunately for us, the central limit theorem comes

to our rescue. What is the central limit theorem? That is going to be the focus for the next half-

an-hour or so.

(Refer Slide Time: 02:19)

Since the parent populations probability distribution is usually not known. We cannot also say

directly what is the sample statistics sampling distribution.

(Refer Slide Time: 02:41)

The central limit theorem simplifies matters a lot by stating that even if the original probability

distribution of the population is not normal, i.e., it is not Gaussian, the sample mean distribution

tends towards the normality provided the sample size is high (say > 30).



(Refer Slide Time: 03:02)

If  there  is  a  non-normal  population  from where  a  random sampled  is  picked.  If  we take  a

reasonably large sample size, the sampling distribution of the mean is normal. So the important

thing is the sampling distribution of the mean is tending towards normality, provided the sample

size is reasonably large.

(Refer Slide Time: 03:34)

Further  even for smaller  samples,  the distribution  is  still  approximately  normal  if  the parent

population distribution does not deviate  too much from normality. Even if you have a small

sample,  the sample size is  small,  the distribution  is  still  approximately  normal  if  the parent



population distribution does not deviate too much from normality. So it is indeed fortunate that

we have the central limit theorem.

(Refer Slide Time: 04:11)

So now let us make the formal statement of the central limit theorem. Let X1, X2 so on to Xn be

a random sample of size n taken from any not necessarily normal population with mean mu and

variance sigma square. Let X bar be the sample mean.

(Refer Slide Time: 04:29)

The limiting form of the distribution of the standard normal variable z=X bar-mu/sigma/root n as

n tends to infinity is the standard normal distribution. Since it is a standard normal distribution,

we are using the symbol z. So z=X bar-mu/sigma/root n. the limiting form of the distribution of



z=X bar-mu/sigma/root n, as n tends to infinity is the standard normal distribution. What we are

doing is we are creating a new random variable z by expressing it or defining it in terms of X bar

–mu whole divided by sigma/root n.

Here X bar is the sample mean, mu is the population mean, sigma is the population standard

deviation, n is the sample size. When n tends to a large number, then this random variable tends

towards  a  standard normal  distribution.  Please recall  that  the standard normal  distribution  is

something which is having mean 0 and variance of unity.

(Refer Slide Time: 05:54)

Let us take some interesting examples. The first one involving the role of 2 dice. Lot of theory

has been built from games. We will be demonstrating the central limit theorem with a couple of

simple examples. We have the outcomes tabulated here, all the possible outcomes are tabulated

here. You have 1 and 1 that means the first dice is showing 1, the second dice is also showing 1,

the average of 1 and 1 would be 1 and the number of such outcomes is only 1.

When you have the dice showing numbers 1 and 2, the first dice may show 1 and the second dice

may show 2 or the first dice may show 2 and the second dice may show 1. So there are 2 possible

outcomes. So that is why the number 2 has been put and the average of 1+2 and 2+1 would be

both 1.5. Similarly, you have for other cases. For example, if you have 3.5 as the average that

may be formed by the combinations, (1, 6) (2, 5) (3, 4) (4, 3) (5, 2) and (6, 1).



In such a case, you can have 6 base of getting the average 3.5. So these are the 6 possibilities

through which we can get an average of 3.5. Similarly, we can do for the other averages also.

You cannot get an average of 1.33 with 2 dice or you cannot get an average of 5.25 with 2 dice,

we can get only these as the possible outcomes and the numbers are here and so the numbers will

add up to 36. There are 6 ways in which the first dice can throw up the results.

There are 6 ways in which the second independent dice will throw up the results, so you have 6 x

6,  which  is  36  possible  outcomes  and the  probabilities  are  calculated  based on the  number

divided by the total number 1/36, 2/36 and so on and these are the probability values and they

sum up to 1. This can be represented on a graph. We can plot the probability and X bar.

(Refer Slide Time: 08:53)

So when you plot the probability versus X bar, you can see a kind of a hat. This is definitely not

a bell shaped curve, but it is more of a hat shaped curve and these are the probabilities. We are

talking about discrete probability outcomes and so we can directly mark the probability against

the  outcome.  So 1 was about  0.03,  which  is  0.027 and that  is  what  you have  here.  So the

probabilities are marked against each of the averages that are possible.

(Refer Slide Time: 09:43)



Let  us  see  what  is  going  to  happen  when  you  have  three  dice.  It  becomes  slightly  more

cumbersome. You have more occurrences of the mean. The discrete probability distribution tends

towards the continuous one or appears to be continuous as you increase the number of dice. You

can now get more possibilities of the mean, you can get 1, you can also get an outcome of 4, the

sum of numbers appearing on the dice.

The sum of numbers appearing on the 3 dice can be 4 and the mean value would be 4/3, which is

1.333. How can you get the number 4. The dice will have numbers 1, 2, and 1 and the 3 dice can

roll in a such a way to get 1, 2, 1 in three different ways. It can be (1, 2, 1) (1, 1, 2) and (2, 1, 1).

There can be three ways in which the number 1, 2, 1 may arise. Similarly, when you look at the

outcome as 5, it can be 2, 2, 1 or 1, 1, 3. You can get 2, 2, 1 in three different ways.

You can get 1, 1, 3 in three different ways. The average is 5/3, which is 1.667. So when you do

like that for all the possible cases, you can see that the averages can range from 1 to 6 and there

is a finer division of the interval between 1 to 6 because you are having 3 dice.

(Refer Slide Time: 11:34)



So you look at the frequency of the occurrence and 3 will occur in only one way, the outcome of

3 or a mean of 1 can occur in only one way. An outcome of 4 or a mean of 1.333 can occur in 3

ways. Like that you can see the number of occurrences for all these outcomes or all these means,

both are equivalent. You can see that the numbers can be recorded in this table and they can be

counted and that would be total ways in which a number 3 can arise.

The sum of numbers on the 3 dice are average of 1 can realize. There can be 3 ways in which a

number of 4 can totally appear on the three dice or a mean of 1.333 can arise and so you can

have all these possibilities. Since you are talking about 3 dice, the number of possible outcomes

are 6*6*6, which is 216. So you have 216 here. The probability can be obtained by dividing

1/216, 3/216, 6/216. So you can have all these probabilities and they can add up to 1.

(Refer Slide Time: 12:55)



No even with 3 dice, you are taking an average based on n=3. Sample size=3. You can see that

the distribution is tending towards normality. It is appearing more bell shaped. For n=2, you had

a hat shape, now you are getting slightly a broader peak.

(Refer Slide Time: 13:32)

So if  the sample size is  large,  the sampling distribution of the means is  normal  even if  the

original population is not normal. If the parent population is normal, the sampling distribution is

also normal even for small n. There are 2 distinct cases. The parent population is not normal, but

the sample size is large. The resulting distribution of the sample means is normal. In the second

the parent population itself is normal. 



So even if you take a small sample from such as population and you look at the distribution of

the sample means, you will find the sampling distribution of the means is also normal, even for

small n.

(Refer Slide Time: 14:31)

For small sample sizes, the sampling distribution of the means is approximately normal provided

the  parent  population  does  not  exhibit  a  great  deviation  from normality. Even  if  the  parent

population was not normal, it  was only slightly deviating from normal and you have a small

sample size. A sampling distribution in such as case involving the small sample size would also

tend to be approximately normal.

(Refer Slide Time: 15:04)



We were  looking  at  variance  of  X1+X2.  We were  also  looking  at  variance  of  X1-X2 and

expected  value  of  X1+X2,  expected  value  of  X1-X2.  The  reason  for  doing  that  is  in  our

statistical  applications,  we may wish to  compare sample  statistics  taken from 2 independent

normal  populations.  Let  us  say that  we are  taking the  sample  statistics  from 2  independent

normal populations.

Both the populations are normal, from where the samples are taken and sample statistics are

calculated. Let us say that the 2 normal populations have different parameters and they are mu1,

sigma 1 for the first population, mu2, sigma2 for the second population, mu1 is different or may

be different from mu2, sigma1 may be different from sigma2 and that is what I meant by 2

populations which are belonging to the same type, but they are having different parameters.

(Refer Slide Time: 16:18)

We know by now that the linear function of the random variables from these 2 independent

populations  is  also  a  normal  distribution,  because  the  original  random variables  were  from

normal distribution themselves. Let us assume before we go to the most general case, let us

assume that sigma is known and so we do not know only the value of mu.

(Refer Slide Time: 16:49)



Now let us consider a linear function of the independent sample statistics. Let us define the linear

function as X1 bar-X2 bar, X1 and X2 are random variables. X1 bar and X2 bar are also random

variables. X1 bar-X2 bar would also be a random variable and that would be having a probability

distribution. What is the mean mu of such a distribution X1 bar-X2 bar. This can be written as

expected value of X1 bar-X2 bar, which is expected value of X1 bar-expected value of X2 bar.

By now, you should be familiar with this. That is why, I am not giving you the steps and that can

be written as mu of X1 bar-mu of X2 bar. The mean of the first sampling distribution of the

mean-the mean of the second sampling distribution of the mean. This is interesting and this is

important. So X1 bar-X2 bar is a random variable. It is having a probability distribution and it

will have its variance.

What is the variance of the distribution formed by the difference of the 2 sampling means X1

bar-X2 bar. What is the variance? That would be sigma X1 bar square + sigma X2 bar square.

We saw that variance of X1+X2=variance of X1+variance of X2. X1 and X2 can be any random

variable. In the present case, X1 is X1 bar, X2 is X2 bar. Do not look at it as X1 and X1 bar as

very different quantities. X1 is a random variable, X1 bar is also a random variable.

X2 is a random variable, X2 bar is also a random variable. So when you are trying to find the

variance of difference of any 2 random variables, it would still be the sum of the variances of the



2 random variables in question, provided the 2 random variables were independent and that is

why we are talking about 2 independent populations. So we are having sigma X1 bar square +

sigma X2 bar square. Now we have to ask ourselves, what is sigma X1 bar square?

What is the variance of the probability distribution formed by X1 bar? What is the variance of

the sampling distribution of X1 bar? The variance of the sampling distribution of X1 bar would

be sigma1 square/n1. The variance of the sampling distributions of the mean X2 bar is given by

sigma2 square/n2. Sigma1 square is the variance of the first population. Sigma2 square is the

variance of the second population.

Sigma1 square/n1 is the variance of the sampling distributions of the mean corresponding to X1

bar. Sigma2 square/n2 is the variance of the sampling distributions of the means corresponding

to X2 bar, n1 and n2 are the samples sizes for X1 bar and samples size for the X2 bar. This is a

very important concept. I request you to think it over, understand it and try to write down the

combinations properties on a paper after thinking about these concepts and see whether you are

able to understand.

Otherwise you again go through the lectures and see where you did not understand.

(Refer Slide Time: 21:18)



So if the 2 parent populations were normal in addition to being independent, then the resulting

distribution  formed by the  difference  of  X1 bar  and X2 bar  would  also  be  normal  and the

parameters would be mu of X1 bar-mu of X2 bar. What is mu of X1 bar? What is the mean of the

sampling distributions of X1 bar? In other words, what is the expected value of X1 bar. We know

by now; it should be mu1.

Similarly expected value of X2 bar or mean of the distribution formed by X2 bar would be mu2.

So you will have mu1-mu2. Similarly, the variance of the distribution formed by the difference

of the 2 samples means X1 bar and X2 bar would have sigma1 square/n1+, there is a typo, I will

correct it, sigma2 square/n2. So the variance of the distribution formed by the difference between

the 2 sample means X1 bar and X2 bar would be sigma X1 bar square + sigma X2 bar square,

which is nothing but sigma1 square/n1+sigma2 square/n2.

(Refer Slide Time: 23:00)

If  the  populations  are  not  normally  distributed,  then  what  can  you  say  about  the  resulting

sampling distribution of the mean. It would depend upon the sample size. If you assume that the

population from which the random samples were drawn was not very deviant from the normal

distribution,  then  for  samples  sizes  >30,  the  2  independent  sampling  distributions  are

approximately  normal  and  a  linear  combination  of  them  would  also  behave  approximately

normal.



Here what you are doing is quite important. We are now talking of difference between 2 sample

means X1 bar and X2 bar. X1 bar and X2 bar have been taken from 2 different populations 1 and

2. Please do not confuse with X1 bar and X2 bar being taken from the same population. Now we

are talking about 2 different populations and we are taking samples from these 2 populations and

we represent them by X1 bar and X2 bar.

Now we are looking at the resulting distribution we will get based on the difference between the

2 sampling means and what are observing is, if the sample sizes are >30 in both the cases, the

sample taken from the first population is having the size >30, the sample taken from the second

population  is  also  having  the  size  >30,  and  according  to  the  central  limit  theorem,  the  2

independent sampling distributions would be behaving normally and hence a linear combination

of them would also behave approximately normally.

So according to the central limit theorem, since the sample size was >30, X1 bar would behave

in a normal manner. The sampling distribution of X2 bar would also behave in a normal fashion.

Under  linear  combination  of  them,  here  X1  bar  and  X2  bar  would  also  be  behaving

approximately normally.

(Refer Slide Time: 25:54)



Consider 2 independent parameters mu1 and sigma1 and mu2, sigma2. Let X1 bar and X2 bar be

the sample means of the 2 independent random samples of sizes n1 and n2 drawn from these 2

populations.

(Refer Slide Time: 26:13)

So now we are going to define a new random variable based on the difference between the 2

random  sample  means.  These  are  2  independent  random  samples  drawn  from  2  different

populations  of  mean  mu1 and  mean  mu2  and  variance  sigma1 square  and variance  sigma2

square. I am talking about the 2 populations of means mu1, sigma1 square and mu2, sigma2

square. Now we are having the sample means, X1 bar and X2 bar.

We are taking the difference of them. Then, we subtract this quantity X1 bar-X2 bar with mu1-

mu2, also note that the expected value of X1 bar would be mu1, expected value of X2 bar would

be mu2. As far as the original population as well as the sampling distributions go, their means are

identical. The mean of the sampling distribution of the means is = the population mean, but the

same thing is not true with the variance.

The sampling distribution of the means will  have a variance sigma square/n,  where n is  the

sample size. So as far as the variance is concerned, the sample size comes into play. So we know

that the variance of X1 bar=sigma1 square/n1, variance of X2 bar, the variance of the sampling



distribution of the means for X2 bar would be sigma2 square by n2. The variance of X1 bar-X2

bar=sigma1 square/n1+sigma2 square/n2.

When you are making this combination, we are not arbitrarily choosing our mu1 and mu2, we

are  not  arbitrarily  choosing  sigma1  square/n1  and  sigma2  square/n2,  you  may  recollect  the

standard normal variable was defined as Z=X-mu/sigma, where mu was the mean and sigma was

the standard deviation of the population from where X was chosen. So we are taking X1 bar-X2

bar and we are looking at that corresponding distributions mean, which is mu1-mu2 and the

variance sigma1 square/n1+sigma2 square/n2.

So that sigma is square root of that would become the standard deviation. So we are defining a

standard normal variable, because of the central limit theorem, the X1 bar-X2 bar was behaving

approximately normally owing to the large sample size. Because of the large sample size for X1

bar,  because of  the  large  sample size  for  X2 bar, both of  the  according to  the  central  limit

theorem would tend to exhibit normal behavior.

A linear combination of the 2 random variables X1 bar and X2 bar would also tend towards

normal behavior and so we are creating a standard normal variable Z for this particular situation

and that standard normal variable is given by (X1 bar-X2 bar) – (mu1-mu2)/square root sigma1

square/n1+sigma2 square/n2. If the two populations are normal, right now we are looking at two

original normal populations.

Then irrespective of the sample size, you are not constrained by a small sample size, in such a

situation, (X1 bar-X2 bar) – (mu1-mu2)/square root of sigma1 square/n1+sigma2 square/n2 will

be a standard normal. In the previous case, the original populations 1 and 2 were not normally

distributed,  but large samples were chosen. So the sampling distribution of the difference in

means also behaved normally and for large sample sizes n1>30 and N2>30, we had the standard

normal variable.

In the easier case, where both the populations are coming from normal distributions even if the

sample sizes for both the sample means X1 bar and X2 bar are small, even then the resulting



distribution of the sampling distribution of the means X1 bar-X2 bar would be normal. Because

the parent populations were themselves normal.

(Refer Slide Time: 32:04)

So  this  is  what,  I  am  summarizing  here.  You  are  having  a  large  sample  size  >30,  parent

distribution is also normal, the statistic involved is X bar, the population mean is mu, variance is

sigma square/n, the sampling distribution is normal. If the sample size is small and the parent

distribution is normal, does not matter, he resulting sampling distribution of the mean would be

normal. You have a large sample >30. The parent distribution is different from normal.

Nothing to worry, central limit theorem will help us and the sampling distribution of the mean

would be normal with mean mu and variance sigma square/n.  The population mean would also

be equal to the sampling distribution mean. The population variance is sigma square, but the

sampling distribution variance would be sigma square/n. So the sampling distribution variance is

sigma square/n and you have a large sample size.

The parent distribution is different from normal. The resulting distribution of the sample would

have mean mu and sigma square/n owing to the central limit theorem, it would be normal. If you

have a small size, < 30 the parent distribution is only slightly deviating from normal, then also

you can assume that the sampling distribution of the mean would be approximately normal with

mean mu and variance sigma square/n.



(Refer Slide Time: 33:53)

Now let us look at the desirable properties of the point estimators. We have seen that we are

estimating the population parameters mu and sigma square by using sample statistics. We are

using the sample mean X bar and the sample standard deviation S to get good point estimates of

the population mean mu and population standard deviation sigma. We are talking about good

point estimators. We will qualify it even further by saying them as unbiased point estimators.

The sample mean and sample variance give us estimates of the population mean and variance

respectively. They are not meant to give us estimates of the sampling distributions parameters.

We are talking about samples taken from a population. The samples have been taken from the

population to get idea about the population parameters. We are not using the sample estimators to

help us to find the sampling distribution parameters.

This is an important difference, which we should be aware of. We are using sample estimators X

bar and S square to know about mu and sigma square of the original population. We are not using

X  bar  and  S  square  to  get  us  estimates  of  the  sampling  distribution  properties.  Once  the

information of mu and sigma square is estimated, then it would be helpful for us. How, we will

be seeing some examples in the future.

(Refer Slide Time: 36:02)



A sample mean is expected to give us the population mean mu and sample variance is expected

to give us the population variance sigma square and remember not the sampling distribution

variance sigma square/n. I know the sample size n, I know the sigma square, estimated from the

sample  variance;  however, conceptually  we are querying the population through the random

sample and most cases have only one random sample taken.

(Refer Slide Time: 36:54)

For unbiased point estimators, the expected value of X bar will be equal to mu and the expected

value of S square will be equal to sigma square. What this means is the expected value of X bar

that means the mean of the sampling distribution of the means would be equal to mu and the



expected value of S square = sigma square. The sigma square is the population variance and the

expected value that S square will take is also equal to sigma square, we can prove them.

(Refer Slide Time: 37:48)

This I have already told you.

(Refer Slide Time: 37:54)

The sample mean and sample variance are only determined from the available  sample  data,

sometimes the available sample may be only 1 and it may be also small in number. So whatever

we have, we have to make do and draw the appropriate estimates.

(Refer Slide Time: 38:20)



This is very interesting. We have to prove that expected value of S square = sigma square, so I

am just substituting the definition for S square here. So since n-1 is constant, we can take it out

and you are essentially having expected value of sigma=1 to n, Xi-X bar whole square. We have

already seen that this will reduce to sigma=1 to n X1 square – nX bar square. I request you to

carry out the calculations on a paper on your own. If you are stuck, you please look at some of

the earlier examples we have covered.

(Refer Slide Time: 39:12)

So expected value of X bar-mu whole square is the variance of X bar and that we get as sigma

square/n. we also know that the expected value of X bar square is equal to sigma square/n+mu

square.  Previously, one of the first  example  set  problems, we saw that  expected value of X



square was sigma square + mu square. The same concept, I am applying for expected value of X

bar square.

Instead of sigma square, which was the variance for X, I am using sigma square/n, which is the

variance for X bar and the mean of X was mu and the mean of X bar is also mu. So expected

value of X bar square=sigma square/n + mu square.

(Refer Slide Time: 40:29)

Hence we can write 1/n-1*expected value of sigma Xi square can be written as n*sigma square +

mu square.  Since  all  the  random variables  were  identically  distributed  for  each  of  these  Xi

squares we will write sigma square + mu square, then add it up, i=1 to n, sigma square + mu

square n times, so that will become n*sigma square + mu square, then we write for the expected

value of this n*X bar square. So we will have n and we use the previous result.

Expected value of X bar square=sigma square/n + mu square, we plug it in here and we have 1/n-

1, n to sigma square + mu square-n*sigma square/n + mu square and so we get n-1 sigma square

in the bracket, this n and n will cancel, you will have -1 sigma square, so this n mu square will

cancel this n mu square, you will have n-1 sigma square resulting. That n-1 will cancel out with

this n-1 and you get sigma square.



So by defining our variance, the sample variance in terms of n-1 makes it possible for us to have

the sample variance S square as the unbiased estimator of the population variance sigma square.

If we had n in our definition for the sample variance, this expected value of S square would have

been different. That is not the same as the population variance sigma square, just by making the

definition properly in terms of the degrees of freedom given as n-1 for the sample variance.

We can see that the expected value of S square is sigma square itself,  hence S square is an

unbiased estimator for the population variance sigma square.

(Refer Slide Time: 42:56)

So the bias of a point estimator is given by the expected value of the estimator – the actual

population parameter theta. We want the bias to be 0. We want the expected value of the point

estimator to be theta itself so that we can get theta-theta=0, so that the bias disappears.

(Refer Slide Time: 43:22)



When you have X bar, which is the point estimator for the population mean, we are using the

random sample mean as the point estimator for the population mean mu, expected value of X bar

was  mu and theta  was  also  mu,  mu-mu=0.  So the  bias  has  become 0.  We can confidently

proclaim that the sample mean is an unbiased estimator of the population mean mu.

(Refer Slide Time: 44:00)

Similarly, we saw that expected value of S square=sigma square, so we can proclaim that the S

square, the sample variance is an unbiased estimator of the population variance sigma square. So

concluding, we have seen the point estimation process. We were looking at random samples, the

sample means, the sample means also behaved as random variables, it exhibited the full fledged



probability  distribution  and  the  complication  was  we  do  not  know  about  the  population

parameters mu and sigma.

We do not know the nature of the population whether it was normal, log normal or viable, but

even  with  so  many  uncertainties  by  carefully  choosing  a  sample  and  by  using  the  sample

statistics like the mean and sample variance, we were able to generate estimates of the population

parameters mu and sigma square respectively and we are also able to show that these X bar and S

square sample statistics where unbiased estimators of the 2 population parameters.

We also talked about the central limit theorem and the central limit theorem is a boon to us,

because if we choose an adequately large sample size, say n>30, the sampling distribution of the

mean behaved in a normal fashion even if the original distribution did not belong to the normal

classification. So we have covered quite a lot of important ground here and these definitely form

the bases for design of experiments and analysis of statistical data.

I would request you to revise the portions up to this point and be clear with the concepts. You do

not  have  to  remember  the  formulae  or  the  rules.  It  is  important  for  you to  understand  the

concepts, assimilate the concepts and then the remaining part of the course would not only be

easy, but also enjoyable. You will be able to directly relate to what we have covered up to this

point, with what you are learning from now on. Thank you.


